ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Layer Security Framework for Optical Non-Terrestrial Networks

70   0   0.0 ( 0 )
 نشر من قبل Olfa Ben Yahia
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose a new physical layer security framework for optical space networks. More precisely, we consider two practical eavesdropping scenarios: free-space optical (FSO) eavesdropping in the space and FSO eavesdropping in the air. In the former, we assume that a high altitude platform station (HAPS) is trying to capture the confidential information from the low earth orbit (LEO) satellite, whereas in the latter, an unmanned aerial vehicle (UAV) eavesdropper is trying to intercept the confidential information from the HAPS node. To quantify the overall performance of both scenarios, we obtain closed-form secrecy outage probability (SOP) and probability of positive secrecy capacity (PPSC) expressions and validate with Monte Carlo simulations. Furthermore, we provide important design guidelines that can be helpful in the design of secure non-terrestrial networks.



قيم البحث

اقرأ أيضاً

Intelligent reflective surface (IRS) technology is emerging as a promising performance enhancement technique for next-generation wireless networks. Hence, we investigate the physical layer security of the downlink in IRS-aided non-orthogonal multiple access networks in the presence of an eavesdropper, where an IRS is deployed for enhancing the quality by assisting the cell-edge user to communicate with the base station. To characterize the networks performance, the expected value of the new channel statistics is derived for the reflected links in the case of Nakagami-m fading. Furthermore, the performance of the proposed network is evaluated both in terms of the secrecy outage probability (SOP) and the average secrecy capacity (ASC). The closed-form expressions of the SOP and the ASC are derived. We also study the impact of various network parameters on the overall performance of the network considered. To obtain further insights, the secrecy diversity orders and the high signal-to-noise ratio slopes are obtained. We finally show that: 1) the expectation of the channel gain in the reflected links is determined both by the number of IRSs and by the Nakagami-m fading parameters; 2) The SOP of both receiver 1 and receiver 2 becomes unity, when the number of IRSs is sufficiently high; 3) The secrecy diversity orders are affected both by the number of IRSs and by the Nakagami-m fading parameters, whereas the high-SNR slopes are not affected by these parameters. Our Monte-Carlo simulations perfectly demonstrate the analytical results.
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin ks in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change the attenuation and scattering of the inciden t electromagnetic wave so that it can propagate in a desired way toward the intended receiver. Specifically, we consider a downlink multiple-input single-output (MISO) broadcast system where the base station (BS) transmits independent data streams to multiple legitimate receivers and keeps them secret from multiple eavesdroppers. By jointly optimizing the beamformers at the BS and reflecting coefficients at the IRS, we formulate a minimum-secrecy-rate maximization problem under various practical constraints on the reflecting coefficients. The constraints capture the scenarios of both continuous and discrete reflecting coefficients of the reflecting elements. Due to the non-convexity of the formulated problem, we propose an efficient algorithm based on the alternating optimization and the path-following algorithm to solve it in an iterative manner. Besides, we show that the proposed algorithm can converge to a local (global) optimum. Furthermore, we develop two suboptimal algorithms with some forms of closed-form solutions to reduce the computational complexity. Finally, the simulation results validate the advantages of the introduced IRS and the effectiveness of the proposed algorithms
We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper . The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.
Physical layer security is investigated over mixture Gamma (MG) distributed fading channels with discrete inputs. By the Gaussian quadrature rules, closed-form expressions are derived to characterize the average secrecy rate (ASR) and secrecy outage probability (SOP), whose accuracy is validated by numerical simulations. To show more properties of the finite-alphabet signaling, we perform an asymptotic analysis on the secrecy metrics in the large limit of the average signal-to-noise ratio (SNR) of the main channel. Leveraging the Mellin transform, we find that the ASR and SOP converge to some constants as the average SNR increases and we derive novel expressions to characterize the rates of convergence. This work establishes a unified and general analytical framework for the secrecy performance achieved by discrete inputs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا