ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Evidence for the Direct Involvement of Local Moments in the Pairing Process of the Heavy-Fermion Superconductor CeCoIn$_5$

133   0   0.0 ( 0 )
 نشر من قبل Wan Kyu Park
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The microscopic mechanism for electron pairing in heavy-fermion superconductors remains a major challenge in quantum materials. Some form of magnetic mediation is widely accepted with spin fluctuations as a prime candidate. A novel mechanism, composite pairing based on the cooperative two-channel Kondo effect directly involving the f-electron moments has also been proposed for some heavy fermion compounds including CeCoIn$_5$. The origin of the spin resonance peak observed in neutron scattering measurements on CeCoIn$_5$ is still controversial and the corresponding hump-dip structure in the tunneling conductance is missing. This is in contrast to the cuprate and Fe-based high-temperature superconductors, where both characteristic signatures are observed, indicating spin fluctuations are likely involved in the pairing process. Here, we report results from planar tunneling spectroscopy along three major crystallographic orientations of CeCoIn5 over wide ranges of temperature and magnetic field. The pairing gap opens at T$_p$ ~ 5 K, well above the bulk T$_c$ = 2.3 K, and its directional dependence is consistent with d$_{x^2-y^2}$ symmetry. With increasing magnetic field, this pairing gap is suppressed as expected but, intriguingly, a gaplike structure emerges smoothly, increasing linearly up to the highest field applied. This field-induced gaplike feature is only observed below T$_p$. The concomitant appearance of the pairing gap and the field-induced gaplike feature, along with its linear increase with field, indicates that the f-electron local moments are directly involved in the pairing process in CeCoIn$_5$.

قيم البحث

اقرأ أيضاً

We present scanning tunneling spectroscopy measurements of the local quasiparticles excitation spectra of CeCoIn$_5$ between 440mK and 3K in samples with a bulk $T_{rm c}=2.25$K. The spectral shape of our low-temperature tunneling data, quite textboo k nodal-gap conductance, allow us to confidently fit the spectra with a d-wave density of states considering also a shortening of quasiparticles lifetime term $Gamma$. The $Delta(0)$ value obtained from the fits yields a BCS ratio $2Delta/kT_{rm c} =7.73$ suggesting that CeCoIn$_5$ is an unconventional superconductor in the strong coupling limit. The fits also suggest that the height of coherence peaks in CeCoIn$_5$ is reduced with respect to a pure BCS spectra and therefore the coupling of quasiparticles with spin excitations should play a relevant role. In addition, the tunneling conductance shows a depletion at energies smaller than $Delta$ for temperatures larger than the bulk $T_{rm c}$, giving further support to the existence of a pseudogap phase that in our samples span up to $T^{*}sim 1.2 T_{rm c}$. The phenomenological scaling of the pseudogap temperature observed in various families of cuprates, $2Delta/kT^{*} sim 4.3 $, is not fulfilled in our measurements. This suggests that in CeCoIn$_5$ the strong magnetic fluctuations might conspire to close the local superconducting gap at a smaller pesudogap temperature-scale than in cuprates.
264 - P. M. C. Rourke 2004
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflec tion characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.
To study the mutual interaction between unconventional superconductivity and magnetic order through an interface, we fabricate Kondo superlattices consisting of alternating layers of heavy-fermion superconductor CeCoIn$_5$ and antiferromagnetic (AFM) heavy-fermion metal CeIn$_3$. The strength of the AFM fluctuations is tuned by applying hydrostatic pressure to CeCoIn$_5(m)$/CeIn$_3(n)$ superlattices with $m$ and $n$ unit-cell-thick layers of CeCoIn$_5$ and CeIn$_3$, respectively. Superconductivity in CeCoIn$_5$ and AFM order in CeIn$_3$ coexist in spatially separated layers. At ambient pressure, N{e}el temperature $T_N$ of the CeIn$_3$ block layers (BLs) of CeCoIn$_5$(7)/CeIn$_3(n)$ shows little dependence on $n$, in contrast to CeIn$_3(n)$/LaIn$_3$(4) superlattices where $T_N$ is strongly suppressed with decreasing $n$. This suggests that each CeIn$_3$ BL is magnetically coupled by the RKKY interaction through the adjacent CeCoIn$_5$ BL and a 3D magnetic state is formed. With applying pressure to CeCoIn$_5$(7)/CeIn$_3$(13), $T_N$ of the CeIn$_3$ BLs is suppressed up to 2.4 GPa, showing a similar pressure dependence as CeIn$_3$ single crystals. An analysis of upper critical field reveals that the superconductivity in the CeCoIn$_5$ BLs is barely influenced by the AFM fluctuations in the CeIn$_3$ BLs, even when the CeIn$_3$ BLs are in the vicinity of the AFM quantum critical point. This is in stark contrast to CeCoIn$_5$/CeRhIn$_5$ superlattice where the superconductivity in the CeCoIn$_5$ BLs is profoundly affected by AFM fluctuations in the CeRhIn$_5$ BLs. The present results show that although AFM fluctuations are injected into the CeCoIn$_5$ BLs from the CeIn$_3$ BLs through the interface, they barely affect the force which binds superconducting electron pairs. These results demonstrate that 2D AFM fluctuations are essentially important for the pairing interactions in CeCoIn$_5$.
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Coope r pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands $E_k^{alpha,beta}$ with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.
Quantum well states appear in metallic thin films due to the confinement of the wave function by the film interfaces. Using angle-resolved photoemission spectroscopy, we unexpectedly observe quantum well states in fractured single crystals of CeCoIn$ _5$. We confirm that confinement occurs by showing that these states binding energies are photon-energy independent and are well described with a phase accumulation model, commonly applied to quantum well states in thin films. This indicates that atomically flat thin films can be formed by fracturing hard single crystals. For the two samples studied, our observations are explained by free-standing flakes with thicknesses of 206 and 101 r{A}. We extend our analysis to extract bulk properties of CeCoIn$_5$. Specifically, we obtain the dispersion of a three-dimensional band near the zone center along in-plane and out-of-plane momenta. We establish part of its Fermi surface, which corresponds to a hole pocket centered at $Gamma$. We also reveal a change of its dispersion with temperature, a signature that may be caused by the Kondo hybridization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا