ﻻ يوجد ملخص باللغة العربية
We explore higher-form symmetries of M- and F-theory compactified on elliptic fibrations, determined by the topology of their asymptotic boundaries. The underlying geometric structures are shown to be equivalent to known characterizations of the gauge group topology in F-theory via Mordell--Weil torsion and string junctions. We further study dimensional reductions of the 11d Chern--Simons term in the presence of torsional boundary $G_4$-fluxes, which encode background gauge fields of center 1-form symmetries in the lower-dimensional effective gauge theory. We find contributions that can be interpreted as t Hooft anomalies involving the 1-form symmetry which originate from a fractionalization of the instanton number of non-Abelian gauge theories in F-/M-theory compactifications to 8d/7d and 6d/5d.
We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and t Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) st
We study higher symmetries and anomalies of 4d $mathfrak{so}(2n_c)$ gauge theory with $2n_f$ flavors. We find that they depend on the parity of $n_c$ and $n_f$, the global form of the gauge group, and the discrete theta angle. The contribution from t
We study the holographic dual to $c$-extremization for 2d $(0,2)$ superconformal field theories (SCFTs) that have an AdS$_3$ dual realized in Type IIB with varying axio-dilaton, i.e. F-theory. M/F-duality implies that such AdS$_3$ solutions can be ma
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spher