ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-Form Symmetries and Their Anomalies in M-/F-Theory Duality

91   0   0.0 ( 0 )
 نشر من قبل Ling Lin
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore higher-form symmetries of M- and F-theory compactified on elliptic fibrations, determined by the topology of their asymptotic boundaries. The underlying geometric structures are shown to be equivalent to known characterizations of the gauge group topology in F-theory via Mordell--Weil torsion and string junctions. We further study dimensional reductions of the 11d Chern--Simons term in the presence of torsional boundary $G_4$-fluxes, which encode background gauge fields of center 1-form symmetries in the lower-dimensional effective gauge theory. We find contributions that can be interpreted as t Hooft anomalies involving the 1-form symmetry which originate from a fractionalization of the instanton number of non-Abelian gauge theories in F-/M-theory compactifications to 8d/7d and 6d/5d.



قيم البحث

اقرأ أيضاً

We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and t Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point of view as well as from the geometric realization in M-theory on non-compact Calabi-Yau threefolds. A geometric criterion for determining the higher-form symmetry from the intersection data of the Calabi-Yau is provided, and we test it in a multitude of examples, including toric geometries. We further check that the higher-form symmetry is consistent with dualities and is invariant under flop transitions, which relate theories with the same UV-fixed point. We explore extensions to higher-form symmetries in other compactifications of M-theory, such as $G_2$-holonomy manifolds, which give rise to 4d $mathcal{N}=1$ theories.
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) st ructure, which can be found by the correlation functions of symmetry generators of the higher-form symmetries. We argue that the Witten effect and anomalous Hall effect in the axion electrodynamics can be described in terms of 3-group transformations.
We study higher symmetries and anomalies of 4d $mathfrak{so}(2n_c)$ gauge theory with $2n_f$ flavors. We find that they depend on the parity of $n_c$ and $n_f$, the global form of the gauge group, and the discrete theta angle. The contribution from t he fermions plays a central role in our analysis. Furthermore, our conclusion applies to $mathcal{N}=1$ supersymmetric cases as well, and we see that higher symmetries and anomalies match across the Intriligator-Seiberg duality between $mathfrak{so}(2n_c)leftrightarrowmathfrak{so}(2n_f-2n_c+4)$.
We study the holographic dual to $c$-extremization for 2d $(0,2)$ superconformal field theories (SCFTs) that have an AdS$_3$ dual realized in Type IIB with varying axio-dilaton, i.e. F-theory. M/F-duality implies that such AdS$_3$ solutions can be ma pped to AdS$_2$ solutions in M-theory, which are holographically dual to superconformal quantum mechanics (SCQM), obtained by dimensional reduction of the 2d SCFTs. We analyze the corresponding map between holographic $c$-extremization in F-theory and $mathcal{I}$-extremization in M-theory, where in general the latter receives corrections relative to the F-theory result.
151 - Hisham Sati , Urs Schreiber 2021
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spher es. Here we show how this leads to a correspondence between phenomena conjectured in M-theory and fundamental mathematical concepts/results in stable homotopy, generalized cohomology and Cobordism theory Mf: Stems of homotopy groups correspond to charges of probe p-branes near black b-branes; stabilization within a stem is the boundary-bulk transition; the Adams d-invariant measures G4-flux; trivialization of the d-invariant corresponds to H3-flux; refined Toda brackets measure H3-flux; the refined Adams e-invariant sees the H3-charge lattice; vanishing Adams e-invariant implies consistent global C3-fields; Conner-Floyds e-invariant is H3-flux seen in the Green-Schwarz mechanism; the Hopf invariant is the M2-brane Page charge (G7-flux); the Pontrjagin-Thom theorem associates the polarized brane worldvolumes sourcing all these charges. Cobordism in the third stable stem witnesses spontaneous KK-compactification on K3-surfaces; the order of the third stable stem implies 24 NS5/D7-branes in M/F-theory on K3. Quaternionic orientations correspond to unit H3-fluxes near M2-branes; complex orientations lift these unit H3-fluxes to heterotic M-theory with heterotic line bundles. In fact, we find quaternionic/complex Ravenel-orientations bounded in dimension; and we find the bound to be 10, as befits spacetime dimension 10+1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا