ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarimetric Properties of Blazars Caught by the WEBT

262   0   0.0 ( 0 )
 نشر من قبل Claudia M. Raiteri
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called blazars. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the gamma-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.



قيم البحث

اقرأ أيضاً

The infrared properties of blazars can be studied from the statistical point of view with the help of sky surveys, like that provided by the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). However, these sources are known for their strong and unpredictable variability, which can be monitored for a handful of objects only. In this paper we consider the 28 blazars (14 BL Lac objects and 14 flat-spectrum radio quasars, FSRQs) that are regularly monitored by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) since 2007. They show a variety of infrared colours, redshifts, and infrared-optical spectral energy distributions (SEDs), and thus represent an interesting mini-sample of bright blazars that can be investigated in more detail. We present near-IR light curves and colours obtained by the GASP from 2007 to 2013, and discuss the infrared-optical SEDs. These are analysed with the aim of understanding the interplay among different emission components. BL Lac SEDs are accounted for by synchrotron emission plus an important contribution from the host galaxy in the closest objects, and dust signatures in 3C 66A and Mkn 421. FSRQ SEDs require synchrotron emission with the addition of a quasar-like contribution, which includes radiation from a generally bright accretion disc, broad line region, and a relatively weak dust torus.
After three years of polarimetric monitoring of blazars, the RoboPol project has uncovered several key characteristics of polarimetric rotations in the optical for these most variable sources. The most important of these is that polarization properti es of the synchrotron emission in the optical appear to be directly linked with gamma-ray activity. In this paper, we discuss the evidence for this connection, as well as the broader features of polarimetric behavior in blazars that are key in making progress with theoretical modeling of blazar emission.
Here we report on the results of the WEBT photo-polarimetric campaign targeting the blazar S5~0716+71, organized in March 2014 to monitor the source simultaneously in BVRI and near IR filters. The campaign resulted in an unprecedented dataset spannin g $sim 110$,h of nearly continuous, multi-band observations, including two sets of densely sampled polarimetric data mainly in R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about $30%$ and bluer-when-brighter spectral evolution, consisting of a day-timescale modulation with superimposed hourlong microflares characterized by $sim 0.1$,mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of $sim 3$,h and $sim 5$,h do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle relative to the positional angle of the innermost radio jet in the source, changes in the polarization degree led the total flux variability by about 2,h; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high polarization degree ($> 30%$) and polarization angles which differed substantially from the polarization angle of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.
Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until May 2011, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Supp ort Program (GASP) of the Whole Earth Blazar Telescope (WEBT) in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily gamma-ray observations by Fermi. Discrete correlation analysis between the optical and gamma-ray emission reveals correlation with a time lag of 0 +- 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time scales than corresponding gamma-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and gamma-ray-emitting zone in the jet. The mean optical degree of polarisation slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarisation angle (EVPA) shows a preferred orientation of about 15 deg, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarisation. A helical magnetic field model predicts an evolution of the mean polarisation that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.
We present the results of a multi-frequency, time-averaged analysis of blazars included in the Candidate Gamma-ray Blazar Survey catalog. Our sample consists of 324 $gamma$-ray detected ($gamma$-ray loud) and 191 non $gamma$-ray detected ($gamma$-ray quiet) blazars, and we consider all the data up to 2016 April 1. We find that both the $gamma$-ray loud and the $gamma$-ray quiet blazar populations occupy similar regions in the WISE color-color diagram, and in the radio and X-ray bands $gamma$-ray loud sources are brighter. A simple one-zone synchrotron inverse-Compton emission model is applied to derive the physical properties of both populations. We find that the central black hole mass and the accretion disk luminosity ($L_{rm disk}$) computed from the modeling of the optical-UV emission with a Shakura-Sunyaev disk reasonably matches with that estimated from the optical spectroscopic emission-line information. A significantly larger Doppler boosting in the $gamma$-ray loud blazars is noted, and their jets are more radiatively efficient. On the other hand, the $gamma$-ray quiet objects are more MeV-peaked, thus could be potential targets for next-generation MeV missions. Our results confirm the earlier findings about the accretion-jet connection in blazars; however, many of the $gamma$-ray quiet blazars tend to deviate from the recent claim that the jet power exceeds $L_{rm disk}$ in blazars. A broadband study, considering a larger set of $gamma$-ray quiet objects and also including BL Lacs, will be needed to confirm/reject this hypothesis and also to verify the evolution of the powerful high-redshift blazars into their low-power nearby counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا