ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry in n-body problem via group representations

275   0   0.0 ( 0 )
 نشر من قبل Zhihong Xia
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an algebraic method to study local stability in the Newtonian $n$-body problem when certain symmetries are present. We use representation theory of groups to simplify the calculations of certain eigenvalue problems. The method should be applicable in many cases, we give two main examples here: the square central configurations with four equal masses, and the equilateral triangular configurations with three equal masses plus an additional mass of arbitrary size at the center. We explicitly found the eigenvalues of certain 8x8 Hessians in these examples, with only some simple calculations of traces. We also studied the local stability properties of corresponding relative equilibria in the four-body problems.



قيم البحث

اقرأ أيضاً

111 - Jinxin Xue 2014
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case, and thus settles the last open case of the conjecture.
It is well known that the linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three-body problem depends on the mass parameter $bb=27(m_1m_2+m_2m_3+m_3m_1)/(m_1+m_2+m_3)^2in [0,9]$ and the eccent ricity $ein [0,1)$. We are not aware of any existing analytical method which relates the linear stability of these solutions to the two parameters directly in the full rectangle $[0,9]times [0,1)$, besides perturbation methods for $e>0$ small enough, blow-up techniques for $e$ sufficiently close to 1, and numerical studies. In this paper, we introduce a new rigorous analytical method to study the linear stability of these solutions in terms of the two parameters in the full $(bb,e)$ range $[0,9]times [0,1)$ via the $om$-index theory of symplectic paths for $om$ belonging to the unit circle of the complex plane, and the theory of linear operators. After establishing the $om$-index decreasing property of the solutions in $bb$ for fixed $ein [0,1)$, we prove the existence of three curves located from left to right in the rectangle $[0,9]times [0,1)$, among which two are -1 degeneracy curves and the third one is the right envelop curve of the $om$-degeneracy curves for $om ot=1$, and show that the linear stability pattern of such elliptic Lagrangian solutions changes if and only if the parameter $(bb,e)$ passes through each of these three curves. Interesting symmetries of these curves are also observed. The singular case when the eccentricity $e$ approaches to 1 is also analyzed in details concerning the linear stability.
We consider the scattering of $n$ classical particles interacting via pair potentials, under the assumption that each pair potential is long-range, i.e. being of order ${cal O}(r^{-alpha})$ for some $alpha >0$. We define and focus on the free region, the set of states leading to well-defined and well-separated final states at infinity. As a first step, we prove the existence of an explicit, global surface of section for the free region. This surface of section is key to proving the smoothness of the map sending a point to its final state and to establishing a forward conjugacy between the $n$-body dynamics and free dynamics.
73 - Leshun Xu , Yong Li 2006
In this paper, we first describe how we can arrange any bodies on Figure-Eight without collision in a dense subset of $[0,T]$ after showing that the self-intersections of Figure-Eight will not happen in this subset. Then it is reasonable for us to co nsider the existence of generalized solutions and non-collision solutions with Mixed-symmetries or with Double-Eight constraints, arising from Figure-Eight, for N-body problem. All of the orbits we found numerically in Section ref{se7} have not been obtained by other authors as far as we know. To prove the existence of these new periodic solutions, the variational approach and critical point theory are applied to the classical N-body equations. And along the line used in this paper, one can construct other symmetric constraints on N-body problems and prove the existence of periodic solutions for them.
For the Newtonian (gravitational) $n$-body problem in the Euclidean $d$-dimensional space, the simplest possible solutions are provided by those rigid motions (homographic solutions) in which each body moves along a Keplerian orbit and the configurat ion of the $n$-body is a constant up to rotations and scalings named textit{central configuration}. For $dleq 3$, the only possible homographic motions are those given by central configurations. For $d geq 4$ instead, new possibilities arise due to the higher complexity of the orthogonal group $O(d)$, as observed by Albouy and Chenciner. For instance, in $mathbb R^4$ it is possible to rotate in two mutually orthogonal planes with different angular velocities. This produces a new balance between gravitational forces and centrifugal forces providing new periodic and quasi-periodic motions. So, for $dgeq 4$ there is a wider class of $S$-textit{balanced configurations} (containing the central ones) providing simple solutions of the $n$-body problem, which can be characterized as well through critical point theory. In this paper, we first provide a lower bound on the number of balanced (non-central) configurations in $mathbb R^d$, for arbitrary $dgeq 4$, and establish a version of the $45^circ$-theorem for balanced configurations, thus answering some questions raised by Moeckel. Also, a careful study of the asymptotics of the coefficients of the Poincare polynomial of the collision free configuration sphere will enable us to derive some rather unexpected qualitative consequences on the count of $S$-balanced configurations. In the last part of the paper, we focus on the case $d=4$ and provide a lower bound on the number of periodic and quasi-periodic motions of the gravitational $n$-body problem which improves a previous celebrated result of McCord.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا