ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity and Quantum Oscillations in Single Crystals of the Compensated Semimetal CaSb$_{2}$

142   0   0.0 ( 0 )
 نشر من قبل Mohamed Oudah
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bulk superconductivity in a topological semimetal is a first step towards realizing topological superconductors, which can host Majorana fermions allowing us to achieve quantum computing. Here, we report superconductivity and compensation of electrons and holes in single crystals of the nodal-line semimetal CaSb$_2$. We characterize the superconducting state and find that Cooper pairs have moderate-weak coupling, and the superconducting transition in specific heat down to 0.22 K deviates from that of a BCS superconductor. The non-saturating magnetoresistance and electron-hole compensation at low temperature are consistent with density functional theory (DFT) calculations showing nodal-line features. Furthermore, we observe de Haas-van Alphen (dHvA) oscillations consistent with a small Fermi surface in the semimetallic state of CaSb$_2$. Our DFT calculations show that the two electron bands crossing the Fermi level are associated with Sb1 zig-zag chains, while the hole band is associated with Sb2 zig-zag chains. The Sb1 zig-zag chains form a distorted square net, which may relate the $M$Sb$_2$ family to the well known $M$SbTe square net semimetals. Realization of superconductivity and a compensated semimetal state in single crystals of CaSb$_2$ establishes the diantimonide family as a candidate class of materials for achieving topological superconductivity.



قيم البحث

اقرأ أيضاً

Single crystals of the compound LaFePO were prepared using a flux growth technique at high temperatures. Electrical resistivity measurements reveal metallic behavior and a resistive transition to the superconducting state at a critical temperature T_ c ~ 6.6 K. Magnetization measurements also show the onset of superconductivity near 6 K. In contrast, specific heat measurements manifest no discontinuity at T_c. These results lend support to the conclusion that the superconductivity is associated with oxygen vacancies that alter the carrier concentration in a small fraction of the sample, although superconductivity characterized by an unusually small gap value can not be ruled-out. Under applied magnetic fields, T_c is suppressed anisotropically for fields perpendicular and parallel to the ab-plane, suggesting that the crystalline anisotropy strongly influences the superconducting state. Preliminary high-pressure measurements show that T_c passes through a maximum of nearly 14 K at ~ 110 kbar, demonstrating that significantly higher T_c values may be achieved in the phosphorus-based oxypnictides.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetot ransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
237 - X. F. Wang , T. Wu , G. Wu 2009
Sizable single crystals of $BaFe_2As_2$ have been grown with self-flux method. The crystals are plate-like with c-axis perpendicular to the plane. The size can be as large as 3 x 5 x 0.2 $mm^3$. The resistivity anisotropy ($rho_c/rho_{ab}$) is as lar ge as about 150, and independent of temperature. The transport in ab plane and along c-axis direction shares the same scattering mechanism. In contrast to the magnetic behavior of polycrystalline samples, no Curie-Weiss behavior are observed, a temperature linear dependent susceptibility occurs above spin-density-wave (SDW) transition. The susceptibility behavior is very similar to that of antiferromagnetic SDW chromium. Magnetic behavior of single crystal definitely gives evidence for existence of local moment except for the contribution to susceptibility from itinerant electrons. A resistivity minimum strongly dependent on magnetic field is observed. A log(1/T) divergency, similar to that of the underdoped cuprates, happens at low temperature. Here we first present intrinsic transport and magnetic properties, and their anisotropy from high quality single crystal.
We report the discovery of superconductivity and detailed normal-state physical properties of RbV3Sb5 single crystals with V kagome lattice. RbV3Sb5 single crystals show a superconducting transition at Tc ~ 0.92 K. Meanwhile, resistivity, magnetizati on and heat capacity measurements indicate that it exhibits anomalies of properties at T* ~ 102 - 103 K, possibly related to the formation of charge ordering state. When T is lower than T*, the Hall coefficient RH undergoes a drastic change and sign reversal from negative to positive, which can be partially explained by the enhanced mobility of hole-type carriers. In addition, the results of quantum oscillations show that there are some very small Fermi surfaces with low effective mass, consistent with the existence of multiple highly dispersive Dirac band near the Fermi energy level.
Here we report the preparation and superconductivity of the 133-type Cr-based quasi-one-dimensional (Q1D) RbCr3As3 single crystals. The samples were prepared by the deintercalation of Rb+ ions from the 233-type Rb2Cr3As3 crystals which were grown fro m a high-temperature solution growth method. The RbCr3As3 compound crystallizes in a centrosymmetric structure with the space group of P63/m (No. 176) different with its non-centrosymmetric Rb2Cr3As3 superconducting precursor, and the refined lattice parameters are a = 9.373(3) {AA} and c = 4.203(7) {AA}. Electrical resistivity and magnetic susceptibility characterizations reveal the occurrence of superconductivity with an interestingly higher onset Tc of 7.3 K than other Cr-based superconductors, and a high upper critical field Hc2(0) near 70 T in this 133-type RbCr3As3 crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا