ترغب بنشر مسار تعليمي؟ اضغط هنا

Team RUC_AIM3 Technical Report at ActivityNet 2021: Entities Object Localization

145   0   0.0 ( 0 )
 نشر من قبل Jieting Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ludan Ruan




اسأل ChatGPT حول البحث

Entities Object Localization (EOL) aims to evaluate how grounded or faithful a description is, which consists of caption generation and object grounding. Previous works tackle this problem by jointly training the two modules in a framework, which limits the complexity of each module. Therefore, in this work, we propose to divide these two modules into two stages and improve them respectively to boost the whole system performance. For the caption generation, we propose a Unified Multi-modal Pre-training Model (UMPM) to generate event descriptions with rich objects for better localization. For the object grounding, we fine-tune the state-of-the-art detection model MDETR and design a post processing method to make the grounding results more faithful. Our overall system achieves the state-of-the-art performances on both sub-tasks in Entities Object Localization challenge at Activitynet 2021, with 72.57 localization accuracy on the testing set of sub-task I and 0.2477 F1_all_per_sent on the hidden testing set of sub-task II.



قيم البحث

اقرأ أيضاً

In this report, we describe the technical details of our submission to the 2021 EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action Recognition. Leveraging multiple modalities has been proved to benefit the Unsupervised Domain Adapt ation (UDA) task. In this work, we present Multi-Modal Mutual Enhancement Module (M3EM), a deep module for jointly considering information from multiple modalities to find the most transferable representations across domains. We achieve this by implementing two sub-modules for enhancing each modality using the context of other modalities. The first sub-module exchanges information across modalities through the semantic space, while the second sub-module finds the most transferable spatial region based on the consensus of all modalities.
In this report, we introduce our real-time 2D object detection system for the realistic autonomous driving scenario. Our detector is built on a newly designed YOLO model, called YOLOX. On the Argoverse-HD dataset, our system achieves 41.0 streaming A P, which surpassed second place by 7.8/6.1 on detection-only track/fully track, respectively. Moreover, equipped with TensorRT, our model achieves the 30FPS inference speed with a high-resolution input size (e.g., 1440-2304). Code and models will be available at https://github.com/Megvii-BaseDetection/YOLOX
This report presents the approach used in the submission of Generic Event Boundary Detection (GEBD) Challenge at CVPR21. In this work, we design a Cascaded Temporal Attention Network (CASTANET) for GEBD, which is formed by three parts, the backbone n etwork, the temporal attention module, and the classification module. Specifically, the Channel-Separated Convolutional Network (CSN) is used as the backbone network to extract features, and the temporal attention module is designed to enforce the network to focus on the discriminative features. After that, the cascaded architecture is used in the classification module to generate more accurate boundaries. In addition, the ensemble strategy is used to further improve the performance of the proposed method. The proposed method achieves 83.30% F1 score on Kinetics-GEBD test set, which improves 20.5% F1 score compared to the baseline method. Code is available at https://github.com/DexiangHong/Cascade-PC.
This technical report presents an overview of our solution used in the submission to 2021 HACS Temporal Action Localization Challenge on both Supervised Learning Track and Weakly-Supervised Learning Track. Temporal Action Localization (TAL) requires to not only precisely locate the temporal boundaries of action instances, but also accurately classify the untrimmed videos into specific categories. However, Weakly-Supervised TAL indicates locating the action instances using only video-level class labels. In this paper, to train a supervised temporal action localizer, we adopt Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through ``local and global temporal context aggregation and complementary as well as progressive boundary refinement. As for the WSTAL, a novel framework is proposed to handle the poor quality of CAS generated by simple classification network, which can only focus on local discriminative parts, rather than locate the entire interval of target actions. Further inspired by the transfer learning method, we also adopt an additional module to transfer the knowledge from trimmed videos (HACS Clips dataset) to untrimmed videos (HACS Segments dataset), aiming at promoting the classification performance on untrimmed videos. Finally, we employ a boundary regression module embedded with Outer-Inner-Contrastive (OIC) loss to automatically predict the boundaries based on the enhanced CAS. Our proposed scheme achieves 39.91 and 29.78 average mAP on the challenge testing set of supervised and weakly-supervised temporal action localization track respectively.
EventNet is a large-scale video corpus and event ontology consisting of 500 events associated with event-specific concepts. In order to improve the quality of the current EventNet, we conduct the following steps and introduce EventNet version 1.1: (1 ) manually verify the correctness of event labels for all videos; (2) remove the YouTube user bias by limiting the maximum number of videos in each event from the same YouTube user as 3; (3) remove the videos which are currently not accessible online; (4) remove the video belonging to multiple event categories. After the above procedure, some events may contain only a small number of videos, and therefore we crawl more videos for those events to ensure every event will contain more than 50 videos. Finally, EventNet version 1.1 contains 67,641 videos, 500 events, and 5,028 event-specific concepts. In addition, we train a Convolutional Neural Network (CNN) model for event classification via fine-tuning AlexNet using EventNet version 1.1. Then we use the trained CNN model to extract FC7 layer feature and train binary classifiers using linear SVM for each event-specific concept. We believe this new version of EventNet will significantly facilitate research in computer vision and multimedia, and will put it online for public downloading in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا