ﻻ يوجد ملخص باللغة العربية
An eigenfunction of the Laplacian on a metric (quantum) graph has an excess number of zeros due to the graphs non-trivial topology. This number, called the nodal surplus, is an integer between 0 and the graphs first Betti number $beta$. We study the distribution of the nodal surplus values in the countably infinite set of the graphs eigenfunctions. We conjecture that this distribution converges to Gaussian for any sequence of graphs of growing $beta$. We prove this conjecture for several special graph sequences and test it numerically for a variety of well-known graph families. Accurate computation of the distribution is made possible by a formula expressing the nodal surplus distribution as an integral over a high-dimensional torus.
According to a well-know theorem by Sturm, a vibrating string is divided into exactly N nodal intervals by zeros of its N-th eigenfunction. Courant showed that one half of Sturms theorem for the strings applies to the theory of membranes: N-th eigenf
We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n
The spectral theory of quantum graphs is related via an exact trace formula with the spectrum of the lengths of periodic orbits (cycles) on the graphs. The latter is a degenerate spectrum, and understanding its structure (i.e.,finding out how many di
The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: What additional information is required in order to resolve isospectral graphs? It was s