ﻻ يوجد ملخص باللغة العربية
Rapid and accurate simulation of cerebral aneurysm flow modifications by flow diverters (FDs) can help improving patient-specific intervention and predicting treatment outcome. However, with explicit FD devices being placed in patient-specific aneurysm model, the computational domain must be resolved around the thin stent wires, leading to high computational cost in computational fluid dynamics (CFD). Classic homogeneous porous medium (PM) methods cannot accurately predict the post-stenting aneurysmal flow field due to the inhomogeneous FD wire distributions on anatomic arteries. We propose a novel approach that models the FD flow modification as a thin inhomogeneous porous medium (iPM). It improves over classic PM approaches in that, first, FD is treated as a screen, which is more accurate than the classic Darcy-Forchheimer relation based on 3D PM. second, the pressure drop is calculated using local FD geometric parameters across an inhomogeneous PM, which is more realistic. To test its accuracy and speed, we applied the iPM technique to simulate the post stenting flow field in three patient-specific aneurysms and compared the results against CFD simulations with explicit FD devices. The iPM CFD ran 500% faster than the explicit CFD while achieving 94%-99% accuracy. Thus iPM is a promising clinical bedside modeling tool to assist endovascular interventions with FD and stents.
Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium in response to the flow, in turn causing flow pathways to evolve. We provide a sim
Flows through porous media can carry suspended and dissolved materials. These sediments may deposit inside the pore-space and alter its geometry. In turn, the changing pore structure modifies the preferential flow paths, resulting in a strong couplin
We develop a 3D porous medium model for sap flow within a tree stem, which consists of a nonlinear parabolic partial differential equation with a suitable transpiration source term. Using an asymptotic analysis, we derive approximate series solutions
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia
We report forced radial imbibition of water in a porous medium in a Hele-Shaw cell. Washburns law is confirmed in our experiment. Radial imbibition follows scaling dynamics and shows anomalous roughening dynamics when the front invades the porous med