ترغب بنشر مسار تعليمي؟ اضغط هنا

A Wideband Dual Function Radar Communication System With Sparse Array and OFDM Waveforms

115   0   0.0 ( 0 )
 نشر من قبل Zhaoyi Xu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel multiple-input multiple-output (MIMO) dual-function radar communication (DFRC) system is proposed. The system transmits wideband, orthogonal frequency division multiplexing (OFDM) waveforms using a small subset of the available antennas in each channel use. The proposed system assigns most carriers to antennas in a shared fashion, thus efficiently exploiting the available communication bandwidth, and a small set of subcarriers to active antennas in an exclusive fashion (private subcarriers). A novel target estimation approach is proposed to overcome the coupling of target parameters introduced by subcarrier sharing. The obtained parameters are further refined via an iterative approach, which formulates a sparse signal recovery problem based on the data of the private subcarriers. The system is endowed with beamforming capability, via waveform precoding and antenna selection. The precoding and antenna selection matrices are optimally co-designed to meet a joint sensing-communication system performance. The sparsity of the transmit array is exploited at the communication receiver to recover the transmitted information. The use of shared subcarriers enables high communication rate, while the sparse transmit array maintains low system hardware cost. The sensing problem is formulated by taking into account frequency selective fading, and a method is proposed to estimate the channel coefficients during the sensing process. The functionality of the proposed system is demonstrated via simulations.

قيم البحث

اقرأ أيضاً

A novel dual-function radar communication (DFRC) system is proposed, that achieves high target resolution and high communication rate. It consists of a multiple-input multiple-output (MIMO) radar, where only a small number of antennas are active in e ach channel use. The probing waveforms are orthogonal frequency division multiplexing (OFDM) type. The OFDM carriers are divided into two groups, one that is used by the active antennas in a shared fashion, and another one, where each subcarrier is assigned to an active antenna in an exclusive fashion (private subcarriers). Target estimation is carried out based on the received and transmitted symbols. The system communicates information via the transmitted OFDM data symbols and the pattern of active antennas in a generalized spatial modulation (GSM) fashion. A multi-antenna communication receiver can identify the indices of active antennas via sparse signal recovery methods. The use of shared subcarriers enables high communication rate. The private subcarriers are used to synthesize a virtual array for high angular resolution, and also for improved estimation on the active antenna indices. The OFDM waveforms allow the communication receiver to easily mitigate the effect of frequency selective fading, while the use of a sparse array at the transmitter reduces the hardware cost of the system. The radar performance of the proposed DFRC system is evaluated via simulations, and bit error rate (BER) results for the communication system are provided.
In this work we consider a multiple-input multiple-output (MIMO) dual-function radar-communication (DFRC) system that employs an orthogonal frequency division multiplexing (OFDM) and a differential phase shift keying (DPSK) modulation, and study the design of the radiated waveforms and of the receive filters employed by the radar and the users. The approach is communication-centric, in the sense that a radar-oriented objective is optimized under constraints on the average transmit power, the power leakage towards specific directions, and the error rate of each user, thus safeguarding the communication quality of service (QoS). We adopt a unified design approach allowing a broad family of radar objectives, including both estimation- and detection-oriented merit functions. We devise a suboptimal solution based on alternating optimization of the involved variables, a convex restriction of the feasible search set, and minorization-maximization, offering a single algorithm for all of the radar merit functions in the considered family. Finally, the performance is inspected through numerical examples.
In this paper, we propose a novel waveform design for multi-input multi-output (MIMO) dual-functional radar-communication systems by taking the range sidelobe control into consideration. In particular, we focus on optimizing the weighted summation of communication and radar metrics under per-antenna power budget. While the formulated optimization problem is non-convex, we develop a first-order descent algorithm by exploiting the manifold structure of its feasible region, which finds a near-optimal solution within a low computational overhead. Numerical results show that the proposed waveform design outperforms the conventional techniques by improving the communication rate while reducing the range sidelobe level.
80 - Hongyu Li , Rang Liu , Ming Li 2019
Intelligent reflecting surface (IRS) is considered as an enabling technology for future wireless communication systems since it can intelligently change the wireless environment to improve the communication performance. In this paper, an IRS-enhanced wideband multiuser multi-input single-output orthogonal frequency division multiplexing (MU-MISO-OFDM) system is investigated. We aim to jointly design the transmit beamformer and the reflection of IRS to maximize the average sum-rate over all subcarriers. With the aid of the relationship between sum-rate maximization and mean square error (MSE) minimization, an efficient joint beamformer and IRS design algorithm is developed. Simulation results illustrate that the proposed algorithm can offer significant average sum-rate enhancement, which confirms the effectiveness of the use of the IRS for wideband wireless communication systems.
This paper studies the processing principles, implementation challenges, and performance of OFDM-based radars, with particular focus on the fourth-generation Long-Term Evolution (LTE) and fifth-generation (5G) New Radio (NR) mobile networks base stat ions and their utilization for radar/sensing purposes. First, we address the problem stemming from the unused subcarriers within the LTE and NR transmit signal passbands, and their impact on frequency-domain radar processing. Particularly, we formulate and adopt a computationally efficient interpolation approach to mitigate the effects of such empty subcarriers in the radar processing. We evaluate the target detection and the corresponding range and velocity estimation performance through computer simulations, and show that high-quality target detection as well as high-precision range and velocity estimation can be achieved. Especially 5G NR waveforms, through their impressive channel bandwidths and configurable subcarrier spacing, are shown to provide very good radar/sensing performance. Then, a fundamental implementation challenge of transmitter-receiver (TX-RX) isolation in OFDM radars is addressed, with specific emphasis on shared-antenna cases, where the TX-RX isolation challenges are the largest. It is confirmed that from the OFDM radar processing perspective, limited TX-RX isolation is primarily a concern in detection of static targets while moving targets are inherently more robust to transmitter self-interference. Properly tailored analog/RF and digital self-interference cancellation solutions for OFDM radars are also described and implemented, and shown through RF measurements to be key technical ingredients for practical deployments, particularly from static and slowly moving targets point of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا