ﻻ يوجد ملخص باللغة العربية
The unified streaming and non-streaming two-pass (U2) end-to-end model for speech recognition has shown great performance in terms of streaming capability, accuracy, real-time factor (RTF), and latency. In this paper, we present U2++, an enhanced version of U2 to further improve the accuracy. The core idea of U2++ is to use the forward and the backward information of the labeling sequences at the same time at training to learn richer information, and combine the forward and backward prediction at decoding to give more accurate recognition results. We also proposed a new data augmentation method called SpecSub to help the U2++ model to be more accurate and robust. Our experiments show that, compared with U2, U2++ shows faster convergence at training, better robustness to the decoding method, as well as consistent 5% - 8% word error rate reduction gain over U2. On the experiment of AISHELL-1, we achieve a 4.63% character error rate (CER) with a non-streaming setup and 5.05% with a streaming setup with 320ms latency by U2++. To the best of our knowledge, 5.05% is the best-published streaming result on the AISHELL-1 test set.
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are m
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are
Despite the recent significant advances witnessed in end-to-end (E2E) ASR system for code-switching, hunger for audio-text paired data limits the further improvement of the models performance. In this paper, we propose a decoupled transformer model t
Training Automatic Speech Recognition (ASR) models under federated learning (FL) settings has attracted a lot of attention recently. However, the FL scenarios often presented in the literature are artificial and fail to capture the complexity of real
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram