ﻻ يوجد ملخص باللغة العربية
We report symmetry-breaking and restoring bifurcations of solitons in a fractional Schr{o}dinger equation with the cubic or cubic-quintic (CQ) nonlinearity and a parity-time (PT)-symmetric potential, which may be realized in optical cavities. Solitons are destabilized at the bifurcation point, and, in the case of the CQ nonlinearity, the stability is restored by an inverse bifurcation. Two mutually-conjugate branches of ghost states (GSs), with complex propagation constants, are created by the bifurcation, solely in the case of the fractional diffraction. While GSs are not true solutions, direct simulations confirm that their shapes and results of their stability analysis provide a blueprint for the evolution of genuine localized modes in the system.
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy
In this paper, we study the existence and instability of standing waves with a prescribed $L^2$-norm for the fractional Schr{o}dinger equation begin{equation} ipartial_{t}psi=(-Delta)^{s}psi-f(psi), qquad (0.1)end{equation} where $0<s<1$, $f(psi)=|ps
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scatt
In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both
We address the existence and stability of localized modes in the framework of the fractional nonlinear Schroedinger equation (FNSE) with the focusing cubic or focusing-defocusing cubic-quintic nonlinearity and a confining harmonic-oscillator (HO) pot