ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-breaking bifurcations and ghost states in the fractional nonlinear Schr{o}dinger equation with a PT-symmetric potential

282   0   0.0 ( 0 )
 نشر من قبل Pengfei Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report symmetry-breaking and restoring bifurcations of solitons in a fractional Schr{o}dinger equation with the cubic or cubic-quintic (CQ) nonlinearity and a parity-time (PT)-symmetric potential, which may be realized in optical cavities. Solitons are destabilized at the bifurcation point, and, in the case of the CQ nonlinearity, the stability is restored by an inverse bifurcation. Two mutually-conjugate branches of ghost states (GSs), with complex propagation constants, are created by the bifurcation, solely in the case of the fractional diffraction. While GSs are not true solutions, direct simulations confirm that their shapes and results of their stability analysis provide a blueprint for the evolution of genuine localized modes in the system.



قيم البحث

اقرأ أيضاً

100 - Remi Carles 2021
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy mptotic profile. The introduction of a harmonic potential generates solitary waves, corresponding to generalized Gaussons. We prove that they are orbitally stable, using an inequality related to relative entropy, which may be thought of as dual to the classical logarithmic Sobolev inequality. In the case of a partial confinement, we show a universal dispersive behavior for suitable marginals. For repulsive harmonic potentials, the dispersive rate is dictated by the potential, and no universal behavior must be expected.
In this paper, we study the existence and instability of standing waves with a prescribed $L^2$-norm for the fractional Schr{o}dinger equation begin{equation} ipartial_{t}psi=(-Delta)^{s}psi-f(psi), qquad (0.1)end{equation} where $0<s<1$, $f(psi)=|ps i|^{p}psi$ with $frac{4s}{N}<p<frac{4s}{N-2s}$ or $f(psi)=(|x|^{-gamma}ast|psi|^2)psi$ with $2s<gamma<min{N,4s}$. To this end, we look for normalized solutions of the associated stationary equation begin{equation} (-Delta)^s u+omega u-f(u)=0. qquad (0.2) end{equation} Firstly, by constructing a suitable submanifold of a $L^2$-sphere, we prove the existence of a normalized solution for (0.2) with least energy in the $L^2$-sphere, which corresponds to a normalized ground state standing wave of(0.1). Then, we show that each normalized ground state of (0.2) coincides a ground state of (0.2) in the usual sense. Finally, we obtain the sharp threshold of global existence and blow-up for (0.1). Moreover, we can use this sharp threshold to show that all normalized ground state standing waves are strongly unstable by blow-up.
161 - Hironobu Sasaki 2008
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scatt ering states. Our result is applicable to reconstructing the nonlinearity of the semi-relativistic Hartree equation.
In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both attractive and repulsive defects in a focusing lattice. Among our main findings are: a) the destabilization of the on--site mode centered at the defect in the repulsive case; b) the disappearance of localized modes in the vicinity of the defect due to saddle-node bifurcations for sufficiently strong defects of either type; c) the decrease of the amplitude formation threshold for attractive and its increase for repulsive defects; and d) the detailed elucidation as a function of initial speed and defect strength of the different regimes (trapping, trapping and reflection, pure reflection and pure transmission) of interaction of a moving localized mode with the defect.
We address the existence and stability of localized modes in the framework of the fractional nonlinear Schroedinger equation (FNSE) with the focusing cubic or focusing-defocusing cubic-quintic nonlinearity and a confining harmonic-oscillator (HO) pot ential. Approximate analytical solutions are obtained in the form of Hermite-Gauss modes. The linear stability analysis and direct simulations reveal that, under the action of the cubic self-focusing, the single-peak ground state and dipole mode are stabilized by the HO potential at values of the Levy index (the fractionality degree) alpha = 1 and alpha < 1, which lead, respectively, to the critical or supercritical collapse in free space. In addition to that, the inclusion of the quintic self-defocusing provides stabilization of higher-order modes, with the number of local peaks up to seven, at least.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا