ترغب بنشر مسار تعليمي؟ اضغط هنا

Regime Switching Mean Field Games with Quadratic Costs

74   0   0.0 ( 0 )
 نشر من قبل Qingshuo Song
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies Mean Field Games with a common noise given by a continuous time Markov chain under a Quadratic cost structure. The theory implies that the optimal path under the equilibrium is a Gaussian process conditional on the common noise. Interestingly, it reveals the Markovian structure of the random equilibrium measure flow, which can be characterized via a deterministic finite dimensional system.



قيم البحث

اقرأ أيضاً

Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho wever, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
We solve non-Markovian optimal switching problems in discrete time on an infinite horizon, when the decision maker is risk aware and the filtration is general, and establish existence and uniqueness of solutions for the associated reflected backward stochastic difference equations. An example application to hydropower planning is provided.
In the context of simple finite-state discrete time systems, we introduce a generalization of mean field game solution, called correlated solution, which can be seen as the mean field game analogue of a correlated equilibrium. Our notion of solution is justified in two ways: We prove that correlated solutions arise as limits of exchangeable correlated equilibria in restricted (Markov open-loop) strategies for the underlying $N$-player games, and we show how to construct approximate $N$-player correlated equilibria starting from a correlated solution to the mean field game.
146 - Minyi Huang , Xuwei Yang 2021
This paper studies an asymptotic solvability problem for linear quadratic (LQ) mean field games with controlled diffusions and indefinite weights for the state and control in the costs. We employ a rescaling approach to derive a low dimensional Ricca ti ordinary differential equation (ODE) system, which characterizes a necessary and sufficient condition for asymptotic solvability. The rescaling technique is further used for performance estimates, establishing an $O(1/N)$-Nash equilibrium for the obtained decentralized strategies.
70 - Minyi Huang 2020
Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different s olution notions and analytical techniques. For LQ models, we address the relation between three solution frameworks: the Nash certainty equivalence (NCE) approach in (Huang, 2010), master equations, and asymptotic solvability, which have been developed starting with different ideas. We establish their equivalence relationships.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا