ﻻ يوجد ملخص باللغة العربية
Artificial spin ices are magnetic metamaterials comprising geometrically-tiled interacting nanomagnets. There is significant interest in these systems for reconfigurable magnonics due to their vast microstate landscape. Studies to-date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication-imperfections (quenched disorder) and microstate-dependent dipolar field landscapes. Here, we study artificial spin ices in pure and disordered microstates and evaluate their zero-field spectra. Removing the applied field allows us to deconvolute contributions to reversal dynamics and spin-wave spectra, directly measuring the dipolar field landscape and quenched disorder. Mode-amplitude provides population readout of nanomagnet magnetisation direction, and hence net magnetisation as well as local vertex populations. We demonstrate microstate-fingerprinting via distinct spectral-readout of three microstates with identical (zero) magnetisation, supported by simulation. These results establish remanence spectral-fingerprinting as a rapid, scalable on-chip readout of both magnetic state and nanoscale dipolar field texture, a critical step in realising next-generation functional magnonic devices.
The spin-wave dynamics of the ferromagnetic nanoarrays termed artificial spin ice (ASI) are known to vary depending on their magnetic microstate. However, little work has been done to characterise this relationship. Recent advances in control over th
Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occuring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems
Precessing ferromagnets are predicted to inject a spin current into adjacent conductors via Ohmic contacts, irrespective of a conductance mismatch with, for example, doped semiconductors. This opens the way to create a pure spin source spin battery b
Efficient detection of the magnetic state at nanoscale dimensions is an important step to utilize spin logic devices for computing. Magnetoresistance effects have been hitherto used in magnetic state detection, but they suffer from energetically unfa
We have measured the low temperature electrical resistivity of Ag : Mn mesoscopic spin glasses prepared by ion implantation with a concentration of 700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a temperature in good agre