ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings

86   0   0.0 ( 0 )
 نشر من قبل Marcely Zanon Boito
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When documenting oral-languages, Unsupervised Word Segmentation (UWS) from speech is a useful, yet challenging, task. It can be performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech discretization models. These discretization models are trained using raw speech only, producing discrete speech units which can be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural approaches, with regards to the exploitability of the produced units for UWS. Two UWS models are experimented with and we report results for Finnish, Hungarian, Mboshi, Romanian and Russian in a low-resource setting (using only 5k sentences). Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be necessary to adapt them to limit sequence length. We obtain our best UWS results by using the SHMM and H-SHMM Bayesian models, which produce high quality, yet compressed, discrete representations of the input speech signal.

قيم البحث

اقرأ أيضاً

We present the Zero Resource Speech Challenge 2020, which aims at learning speech representations from raw audio signals without any labels. It combines the data sets and metrics from two previous benchmarks (2017 and 2019) and features two tasks whi ch tap into two levels of speech representation. The first task is to discover low bit-rate subword representations that optimize the quality of speech synthesis; the second one is to discover word-like units from unsegmented raw speech. We present the results of the twenty submitted models and discuss the implications of the main findings for unsupervised speech learning.
We investigate the efficiency of two very different spoken term detection approaches for transcription when the available data is insufficient to train a robust ASR system. This work is grounded in very low-resource language documentation scenario wh ere only few minutes of recording have been transcribed for a given language so far.Experiments on two oral languages show that a pretrained universal phone recognizer, fine-tuned with only a few minutes of target language speech, can be used for spoken term detection with a better overall performance than a dynamic time warping approach. In addition, we show that representing phoneme recognition ambiguity in a graph structure can further boost the recall while maintaining high precision in the low resource spoken term detection task.
While low resource speech recognition has attracted a lot of attention from the speech community, there are a few tools available to facilitate low resource speech collection. In this work, we present SANTLR: Speech Annotation Toolkit for Low Resourc e Languages. It is a web-based toolkit which allows researchers to easily collect and annotate a corpus of speech in a low resource language. Annotators may use this toolkit for two purposes: transcription or recording. In transcription, annotators would transcribe audio files provided by the researchers; in recording, annotators would record their voice by reading provided texts. We highlight two properties of this toolkit. First, SANTLR has a very user-friendly User Interface (UI). Both researchers and annotators may use this simple web interface to interact. There is no requirement for the annotators to have any expertise in audio or text processing. The toolkit would handle all preprocessing and postprocessing steps. Second, we employ a multi-step ranking mechanism facilitate the annotation process. In particular, the toolkit would give higher priority to utterances which are easier to annotate and are more beneficial to achieving the goal of the annotation, e.g. quickly training an acoustic model.
Techniques for multi-lingual and cross-lingual speech recognition can help in low resource scenarios, to bootstrap systems and enable analysis of new languages and domains. End-to-end approaches, in particular sequence-based techniques, are attractiv e because of their simplicity and elegance. While it is possible to integrate traditional multi-lingual bottleneck feature extractors as front-ends, we show that end-to-end multi-lingual training of sequence models is effective on context independent models trained using Connectionist Temporal Classification (CTC) loss. We show that our model improves performance on Babel languages by over 6% absolute in terms of word/phoneme error rate when compared to mono-lingual systems built in the same setting for these languages. We also show that the trained model can be adapted cross-lingually to an unseen language using just 25% of the target data. We show that training on multiple languages is important for very low resource cross-lingual target scenarios, but not for multi-lingual testing scenarios. Here, it appears beneficial to include large well prepared datasets.
398 - Yubei Xiao , Ke Gong , Pan Zhou 2020
Low-resource automatic speech recognition (ASR) is challenging, as the low-resource target language data cannot well train an ASR model. To solve this issue, meta-learning formulates ASR for each source language into many small ASR tasks and meta-lea rns a model initialization on all tasks from different source languages to access fast adaptation on unseen target languages. However, for different source languages, the quantity and difficulty vary greatly because of their different data scales and diverse phonological systems, which leads to task-quantity and task-difficulty imbalance issues and thus a failure of multilingual meta-learning ASR (MML-ASR). In this work, we solve this problem by developing a novel adversarial meta sampling (AMS) approach to improve MML-ASR. When sampling tasks in MML-ASR, AMS adaptively determines the task sampling probability for each source language. Specifically, for each source language, if the query loss is large, it means that its tasks are not well sampled to train ASR model in terms of its quantity and difficulty and thus should be sampled more frequently for extra learning. Inspired by this fact, we feed the historical task query loss of all source language domain into a network to learn a task sampling policy for adversarially increasing the current query loss of MML-ASR. Thus, the learnt task sampling policy can master the learning situation of each language and thus predicts good task sampling probability for each language for more effective learning. Finally, experiment results on two multilingual datasets show significant performance improvement when applying our AMS on MML-ASR, and also demonstrate the applicability of AMS to other low-resource speech tasks and transfer learning ASR approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا