ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical calibration of the SNO+ detector in the water phase with deployed sources

108   0   0.0 ( 0 )
 نشر من قبل Ana Sofia In\\'acio
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SNO+ is a large-scale liquid scintillator experiment with the primary goal of searching for neutrinoless double beta decay, and is located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector acquired data for two years as a pure water Cherenkov detector, starting in May 2017. During this period, the optical properties of the detector were measured in situ using a deployed light diffusing sphere, with the goal of improving the detector model and the energy response systematic uncertainties. The measured parameters included the water attenuation coefficients, effective attenuation coefficients for the acrylic vessel, and the angular response of the photomultiplier tubes and their surrounding light concentrators, all across different wavelengths. The calibrated detector model was validated using a deployed tagged gamma source, which showed a 0.6% variation in energy scale across the primary target volume.



قيم البحث

اقرأ أيضاً

The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV $gamma$ produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV $gamma$. Analysis of the delayed coincidence between the 4.4-MeV $gamma$ and the 2.2-MeV capture $gamma$ revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of $336.3^{+1.2}_{-1.5}$ mb.
We have developed a low-energy electron recoil (ER) calibration method with $^{220}$Rn for the PandaX-II detector. $^{220}$Rn, emanated from natural thorium compounds, was fed into the detector through the xenon purification system. From 2017 to 2019 , we performed three dedicated calibration campaigns with different radon sources. We studied the detector response to $alpha$, $beta$, and $gamma$ particles with focus on low energy ER events. During the runs in 2017 and 2018, the amount of radioactivity of $^{222}$Rn were on the order of 1% of that of $^{220}$Rn and thorium particulate contamination was negligible, especially in 2018. We also measured the background contribution from $^{214}$Pb for the first time in PandaX-II with the help from a $^{222}$Rn injection. Calibration strategy with $^{220}$Rn and $^{222}$Rn will be implemented in the upcoming PandaX-4T experiment and can be useful for other xenon-based detectors as well.
The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta ($0 ubetabeta$) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellu rium, corresponding to 1.3 tonnes of $^{130}$Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for $0 ubetabeta$ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for $0 ubetabeta$ decay is scalable: a future phase with high $^{130}$Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.
168 - R. Alves 2014
A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such a s the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements.
We report on the preparation of and calibration measurements with a $^{83mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injectio n into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83mathrm{m}}$Kr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9$%$ at the total $^{83mathrm{m}}$Kr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا