ﻻ يوجد ملخص باللغة العربية
Coherent coupling between excitons is at the heart of many-body interactions with transition metal dichalcogenide (TMD) heterostructures as an emergent platform for the investigation of these interactions. We employ multi-dimensional coherent spectroscopy on monolayer MoSetextsubscript{2}/WSetextsubscript{2} heterostructures and observe coherent coupling between excitons spatially localized in monolayer MoSe$_2$ and WSe$_2$. Through many-body spectroscopy, we further observe the absorption state arising from free interlayer electron-hole pairs. This observation yields a spectroscopic measurement of the interlayer exciton binding energy of about 250 meV.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790
Fully-inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission and l
In heterostructures consisting of different transition-metal dichalcogenide monolayers, a staggered band alignment can occur, leading to rapid charge separation of optically generated electron-hole pairs into opposite monolayers. These spatially sepa
We consider dynamics of excitons in branched conducting polymers. An effective model based on the use of quantum graph concept is applied for computing of exciton migration along the branched polymer chain Condition for the regime, when the transmiss
We have combined spatially-resolved steady-state micro-photoluminescence ($mu$PL) with time-resolved photoluminescence (TRPL) to investigate the exciton diffusion in a WSe$_2$ monolayer encapsulated with hexagonal boron nitride (hBN). At 300 K, we ex