ﻻ يوجد ملخص باللغة العربية
We show that groups presented by inverse-closed finite convergent length-reducing rewriting systems are characterised by a striking geometric property: their Cayley graphs are geodetic and side-lengths of non-degenerate triangles are uniformly bounded. This leads to a new algebraic result: the group is plain (isomorphic to the free product of finitely many finite groups and copies of $mathbb Z$) if and only if a certain relation on the set of non-trivial finite-order elements of the group is transitive on a bounded set. We use this to prove that deciding if a group presented by an inverse-closed finite convergent length-reducing rewriting system is not plain is in $mathsf{NP}$. A yes answer would disprove a longstanding conjecture of Madlener and Otto from 1987. We also prove that the isomorphism problem for plain groups presented by inverse-closed finite convergent length-reducing rewriting systems is in $mathsf{PSPACE}$.
An abstract group $G$ is called totally 2-closed if $H = H^{(2),Omega}$ for any set $Omega$ with $Gcong Hleqtextrm{Sym}_Omega$, where $H^{(2),Omega}$ is the largest subgroup of symmetric group of $Omega$ whose orbits on $OmegatimesOmega$ are the same
We prove that a group is presented by finite convergent length-reducing rewriting systems where each rule has left-hand side of length 3 if and only if the group is plain. Our proof goes via a new result concerning properties of embedded circuits in
This note proves a generalisation to inverse semigroups of Anisimovs theorem that a group has regular word problem if and only if it is finite, answering a question of Stuart Margolis. The notion of word problem used is the two-tape word problem -- t
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of
We study a class of inverse monoids of the form M = Inv< X | w=1 >, where the single relator w has a combinatorial property that we call sparse. For a sparse word w, we prove that the word problem for M is decidable. We also show that the set of word