ﻻ يوجد ملخص باللغة العربية
Voronoi constellations (VCs) are finite sets of vectors of a coding lattice enclosed by the translated Voronoi region of a shaping lattice, which is a sublattice of the coding lattice. In conventional VCs, the shaping lattice is a scaled-up version of the coding lattice. In this paper, we design low-complexity VCs with a cubic coding lattice of up to 32 dimensions, in which pseudo-Gray labeling is applied to minimize the bit error rate. The designed VCs have considerable shaping gains of up to 1.03 dB and finer choices of spectral efficiencies in practice. A mutual information estimation method and a log-likelihood approximation method based on importance sampling for very large constellations are proposed and applied to the designed VCs. With error-control coding, the proposed VCs can have higher achievable information rates than the conventional scaled VCs because of their inherently good pseudo-Gray labeling feature, with a lower decoding complexity.
End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding an
We investigate the special case of diamond relay comprising a Gaussian channel with identical frequency response between the user and the relays and fronthaul links with limited rate from the relays to the destination. We use the oblivious compress a
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional o
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g
This paper studies the capacity of the peak-and-average-power-limited Gaussian channel when its output is quantized using a dithered, infinite-level, uniform quantizer of step size $Delta$. It is shown that the capacity of this channel tends to that