ﻻ يوجد ملخص باللغة العربية
Recently, Balliu, Brandt, and Olivetti [FOCS 20] showed the first $omega(log^* n)$ lower bound for the maximal independent set (MIS) problem in trees. In this work we prove lower bounds for a much more relaxed family of distributed symmetry breaking problems. As a by-product, we obtain improved lower bounds for the distributed MIS problem in trees. For a parameter $k$ and an orientation of the edges of a graph $G$, we say that a subset $S$ of the nodes of $G$ is a $k$-outdegree dominating set if $S$ is a dominating set of $G$ and if in the induced subgraph $G[S]$, every node in $S$ has outdegree at most $k$. Note that for $k=0$, this definition coincides with the definition of an MIS. For a given $k$, we consider the problem of computing a $k$-outdegree dominating set. We show that, even in regular trees of degree at most $Delta$, in the standard LOCAL model, there exists a constant $epsilon>0$ such that for $kleq Delta^epsilon$, for the problem of computing a $k$-outdegree dominating set, any randomized algorithm requires at least $Omega(min{logDelta,sqrt{loglog n}})$ rounds and any deterministic algorithm requires at least $Omega(min{logDelta,sqrt{log n}})$ rounds. The proof of our lower bounds is based on the recently highly successful round elimination technique. We provide a novel way to do simplifications for round elimination, which we expect to be of independent interest. Our new proof is considerably simpler than the lower bound proof in [FOCS 20]. In particular, our round elimination proof uses a family of problems that can be described by only a constant number of labels. The existence of such a proof for the MIS problem was believed impossible by the authors of [FOCS 20].
Given a graph $G = (V,E)$, an $(alpha, beta)$-ruling set is a subset $S subseteq V$ such that the distance between any two vertices in $S$ is at least $alpha$, and the distance between any vertex in $V$ and the closest vertex in $S$ is at most $beta$
We present $O(loglog n)$ round scalable Massively Parallel Computation algorithms for maximal independent set and maximal matching, in trees and more generally graphs of bounded arboricity, as well as for constant coloring trees. Following the standa
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992)
The problem of scheduling unrelated machines by a truthful mechanism to minimize the makespan was introduced in the seminal Algorithmic Mechanism Design paper by Nisan and Ronen. Nisan and Ronen showed that there is a truthful mechanism that provides
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present