ترغب بنشر مسار تعليمي؟ اضغط هنا

A topological characterisation of the Kashiwara-Vergne groups

53   0   0.0 ( 0 )
 نشر من قبل Marcy Robertson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2017 Bar-Natan and the first author showed that solutions to the Kashiwara--Vergne equations are in bijection with certain knot invariants: homomorphic expansions of welded foams. Welded foams are a class of knotted tubes in $mathbb{R}^4$, which can be finitely presented algebraically as a circuit algebra, or, equivalently, a wheeled prop. In this paper we describe the Kashiwara-Vergne groups $mathsf{KV}$ and $mathsf{KRV}$ -- the symmetry groups of Kashiwara-Vergne solutions -- as automorphisms of the completed circuit algebras of welded foams, and their associated graded circuit algebra of arrow diagrams, respectively. Finally, we provide a description of the graded Grothendieck-Teichmuller group $mathsf{GRT}_1$ as automorphisms of arrow diagrams.



قيم البحث

اقرأ أيضاً

For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. F urthermore, this Coxeter group is a lattice inside the isometry group of hyperbolic 3-space, with fundamental domain the original polyhedron P. In this paper, we provide a procedure for computing the lower algebraic K-theory of the integral group ring of such Coxeter lattices in terms of the geometry of the polyhedron P. As an ingredient in the computation, we explicitly calculate some of the lower K-groups of the dihedral groups and the product of dihedral groups with the cyclic group of order two.
Tverberg-type theory aims to establish sufficient conditions for a simplicial complex $Sigma$ such that every continuous map $fcolon Sigma to mathbb{R}^d$ maps $q$ points from pairwise disjoint faces to the same point in $mathbb{R}^d$. Such results a re plentiful for $q$ a power of a prime. However, for $q$ with at least two distinct prime divisors, results that guarantee the existence of $q$-fold points of coincidence are non-existent---aside from immediate corollaries of the prime power case. Here we present a general method that yields such results beyond the case of prime powers. In particular, we prove previously conjectured upper bounds for the topological Tverberg problem for all $q$.
In this paper we consider several classical and novel algorithmic problems for right-angled Artin groups, some of which are closely related to graph theoretic problems, and study their computational complexity. We study these problems with a view towards applications to cryptography.
We consider a deformation of the Robert-Wagner foam evaluation formula, with an eye toward a relation to formal groups. Integrality of the deformed evaluation is established, giving rise to state spaces for planar GL(N) MOY graphs (Murakami-Ohtsuki-Y amada graphs). Skein relations for the deformation are worked out in details in the GL(2) case. These skein relations deform GL(2) foam relations of Beliakova, Hogancamp, Putyra and Wehrli. We establish the Reidemeister move invariance of the resulting chain complexes assigned to link diagrams, giving us a link homology theory.
We prove that the group $Aut_1(xi)$ of strict contactomorphisms, also known as quantomorphisms, of the standard tight contact structure $xi$ on $S^3$ is the total space of a fiber bundle $S^1 to Aut_1(xi) to SDiff(S^2)$ over the group of area-preserv ing $C^infty$-diffeomorphisms of $S^2$, and that it deformation retracts to its finite-dimensional sub-bundle $S^1 to U(2)cup cU(2) to O(3)$, where $U(2)$ is the unitary group and $c$ is complex conjugation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا