ﻻ يوجد ملخص باللغة العربية
We propose a method for reconfiguring a relay node for polarization encoded quantum key distribution (QKD) networks. The relay can be switched between trusted and untrusted modes to adapt to different network conditions, relay distances, and security requirements. This not only extends the distance over which a QKD network operates but also enables point-to-multipoint (P2MP) network topologies. The proposed architecture centralizes the expensive and delicate single-photon detectors (SPDs) at the relay node with eased maintenance and cooling while simplifying each user node so that it only needs commercially available devices for low-cost qubit preparation.
We propose an integrated photonics device for mapping qubits encoded in the polarization of a photon onto the spin state of a solid-state defect coupled to a photonic crystal cavity: a `Polarization-Encoded Photon-to-Spin Interface (PEPSI). We perfor
Due to physical orientations and birefringence effects, practical quantum information protocols utilizing optical polarization need to handle misalignment between preparation and measurement reference frames. For any such capable system, an important
We consider a system consisting of a server, which receives updates for $N$ files according to independent Poisson processes. The goal of the server is to deliver the latest version of the files to the user through a parallel network of $K$ caches. W
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuato
New optical technologies offer the ability to reconfigure network topologies dynamically, rather than setting them once and for all. This is true in both optical wide area networks (optical WANs) and in datacenters, despite the many differences betwe