ﻻ يوجد ملخص باللغة العربية
We study various triangulated motivic categories and introduce a vast family of aisles (these are certain classes of objects) in them. These aisles are defined in terms of the corresponding motives (or motivic spectra) of smooth varieties in them; we relate them to the corresponding homotopy t-structures. We describe our aisles in terms of stalks at function fields and prove that they widely generalize the ones corresponding to slice filtrations. Further, the filtrations on the homotopy hearts $Ht_{hom}^{eff}$ of the corresponding effective subcategories that are induced by these aisles can be described in terms of (Nisnevich) sheaf cohomology as well as in terms of the Voevodsky contractions $-_{-1}$. Respectively, we express the condition for an object of $Ht_{hom}^{eff}$ to be weakly birational (i.e., that its $n+1$th contraction is trivial or, equivalently, the Nisnevich cohomology vanishes in degrees $>n$ for some $nge 0$) in terms of these aisles; this statement generalizes well-known results of Kahn and Sujatha. Next, these classes define weight structures $w_{Smooth}^{s}$ (where $s=(s_{j})$ are non-decreasing sequences parameterizing our aisles) that vastly generalize the Chow weight structures $w_{Chow}$ defined earlier. Using general abstract nonsense we also construct the corresponding adjacent $t-$structures $t_{Smooth}^{s}$ and prove that they give the birationality filtrations on $Ht^{eff}_{hom}$. Moreover, some of these weight structures induce weight structures on the corresponding $n-$birational motivic categories (these are the localizations by the levels of the slice filtrations). Our results also yield some new unramified cohomology calculations.
In this note, we provide an axiomatic framework that characterizes the stable $infty$-categories that are module categories over a motivic spectrum. This is done by invoking Luries $infty$-categorical version of the Barr--Beck theorem. As an applicat
We demonstrate that a conjecture of Teh which relates the niveau filtration on Borel-Moore homology of real varieties and the images of generalized cycle maps from reduced Lawson homology is false. We show that the niveau filtration on reduced Lawson
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the complex numbers. For the field of algebraic numbers we formulate a period conjecture for motivic cohomology by saying that this period regulator is s
We prove a topological invariance statement for the Morel-Voevodsky motivic homotopy category, up to inverting exponential characteristics of residue fields. This implies in particular that SH[1/p] of characteristic p>0 schemes is invariant under pas
We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fultons intersection t