ﻻ يوجد ملخص باللغة العربية
One of the main challenges for ab initio nuclear many-body theory is the growth of computational and storage costs as calculations are extended to heavy, exotic, and structurally complex nuclei. Here, we investigate the factorization of nuclear interactions as a means to address this issue. We perform Singular Value Decompositions of nucleon-nucleon interactions in partial wave representation and study the dependence of the singular value spectrum on interaction characteristics like regularization scheme and resolution scales. We develop and implement the Similarity Renormalization Group (SRG) evolution of the factorized interaction, and demonstrate that this SVD-SRG approach accurately preserves two-nucleon observables. We find that low-resolution interactions allow the truncation of the SVD at low rank, and that a small number of relevant components is sufficient to capture the nuclear interaction and perform an accurate SRG evolution, while the Coulomb interaction requires special consideration. The rank is uniform across all partial waves, and almost independent of the basis choice in the tested cases. This suggests an interpretation of the relevant singular components as mere representations of a small set of abstract operators that can describe the interaction and its SRG flow. Following the traditional workflow for nuclear interactions, we discuss how the transformation between the center-of-mass and laboratory frames creates redundant copies of the partial wave components when implemented in matrix representation, and we discuss strategies for mitigation. Finally, we test the low-rank approximation to the SRG-evolved interactions in many-body calculations using the In-Medium SRG. By including nuclear radii in our analysis, we verify that the implementation of the SRG using the singular vectors of the interaction does not spoil the evolution of other observables.
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its comp
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. Wi
Efforts to describe nuclear structure and dynamics from first principles have advanced significantly in recent years. Exact methods for light nuclei are now able to include continuum degrees of freedom and treat structure and reactions on the same fo
We have developed a fully consistent framework for calculations in the Quasiparticle Random Phase Approximation (QRPA) with $NN$ interactions from the Similarity Renormalization Group (SRG) and other unitary transformations of realistic interactions.
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nucl