ﻻ يوجد ملخص باللغة العربية
We report on the systematic characterization of the optical properties of diamond color centers based on Pb impurities. An ensemble photoluminescence analysis of their spectral emission was performed at different excitation wavelengths in the 405-520 nm range and at different temperatures in the 4-300 K range. The series of observed spectral features consist of different emission lines associated with Pb-related defects. Finally, a room-temperature investigation of single-photon emitters under 490.5 nm laser excitation is reported, revealing different spectral signatures with respect to those already reported under 514 nm excitation. This work represents a substantial progress with respect to previous studies on Pb-related color centers, both in the attribution of an articulated series of spectral features and in the understanding of the formation process of this type of defect, thus clarifying the potential of this system for high-impact applications in quantum technologies.
Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emissio
Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiatio
Emerging quantum technologies require precise control over quantum systems of increasing complexity. Defects in diamond, particularly the negatively charged nitrogen-vacancy (NV) center, are a promising platform with the potential to enable technolog
We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers, a
Silicon-vacancy (SiV) centers in diamond are promising systems for quantum information applications due to their bright single photon emission and optically accessible spin states. Furthermore, SiV centers in low-strain diamond are insensitive to per