ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Light Shadow Imaging using Quantum-Noise Detection with a Camera

255   0   0.0 ( 0 )
 نشر من قبل Savannah Cuozzo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate an imaging technique based on quantum noise modifications after interaction with an opaque object. This approach is particularly attractive for applications requiring weak illumination. We implement a homodyne-like detection scheme which allows us to eliminate detrimental effects of the cameras dark noise. Here we illuminate the object with squeezed vacuum containing less than one photon per frame, generated in an atomic ensemble, and reconstruct the shape of the object with higher contrast than the direct intensity imaging using 1000 times more photons.



قيم البحث

اقرأ أيضاً

We show that it is possible to estimate the shape of an object by measuring only the fluctuations of a probing field, allowing us to expose the object to a minimal light intensity. This scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough such that photon counting is not an option. We generate a few-photon state of multi-spatial-mode vacuum-squeezed twin beams using four-wave mixing and direct one of these twin fields through a binary intensity mask whose shape is to be imaged. Exploiting either the classical fluctuations in a single beam or quantum correlations between the twin beams, we demonstrate that under some conditions quantum correlations can provide an enhancement in sensitivity when estimating the shape of the object.
We present a technique for squeezed light detection based on direct imaging of the displaced-squeezed-vacuum state using a CCD camera. We show that the squeezing parameter can be accurately estimated using only the first two moments of the recorded p ixel-to-pixel photon fluctuation statistics, with accuracy that rivals that of the standard squeezing detection methods such as a balanced homodyne detection. Finally, we numerically simulate the camera operation, reproducing the noisy experimental results with low signal samplings and confirming the theory with high signal samplings.
The contrast of an image can be degraded by the presence of background light and sensor noise. To overcome this degradation, quantum illumination protocols have been theorised (Science 321 (2008), Physics Review Letters 101 (2008)) that exploit the s patial correlations between photon-pairs. Here we demonstrate the first full-field imaging system using quantum illumination, by an enhanced detection protocol. With our current technology we achieve a rejection of background and stray light of order 5 and also report an image contrast improvement up to a factor of 5.5, which is resilient to both environmental noise and transmission losses. The quantum illumination protocol differs from usual quantum schemes in that the advantage is maintained even in the presence of noise and loss. Our approach may enable laboratory-based quantum imaging to be applied to real-world applications where the suppression of background light and noise is important, such as imaging under low-photon flux and quantum LIDAR.
Standard quantum state reconstruction techniques indicate that a detection efficiency of $0.5$ is an absolute threshold below which quantum interferences cannot be measured. However, alternative statistical techniques suggest that this threshold can be overcome at the price of increasing the statistics used for the reconstruction. In the following we present numerical experiments proving that quantum interferences can be measured even with a detection efficiency smaller than $0.5$. At the same time we provide a guideline for handling the tomographic reconstruction of quantum states based on homodyne data collected by low efficiency detectors.
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected. This method relies on quantum interference and spatial correlations between the twin photons to form an image. Here we present a detailed study of the resolution limits of position correlation enabled QIUP. We establish a quantitative relation between the spatial resolution and the twin photon position correlation in the spontaneous parametric down-conversion process (SPDC). Furthermore, we also quantitatively establish the roles that the wavelength of the undetected illumination field and the wavelength of the detected field play in the resolution. Like ghost imaging and unlike conventional imaging, the resolution limit imposed by the spatial correlation between twin photons in QIUP cannot be further improved by conventional optical techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا