ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and magneto-optical properties of ferromagnetic monolayer CrBr$_3$: A first-principles $GW$ and $GW$ plus Bethe-Salpeter equation study

149   0   0.0 ( 0 )
 نشر من قبل Meng Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of atomically thin two-dimensional (2D) magnetic semiconductors has triggered enormous research interest recently. In this work, we use first-principles many-body perturbation theory to study a prototypical 2D ferromagnetic semiconductor, monolayer chromium tribromide (CrBr$_3$). With broken time-reversal symmetry, spin-orbit coupling, and excitonic effects included through the full-spinor $GW$ and $GW$ plus Bethe-Salpeter equation ($GW$-BSE) methods, we compute the frequency-dependent dielectric function tensor that governs the optical and magneto-optical properties. In addition, we provide a detailed theoretical formalism for simulating magnetic circular dichroism, magneto-optical Kerr effect, and Faraday effect, demonstrating the approach with monolayer CrBr$_3$. Due to reduced dielectric screening in 2D and localized nature of the Cr d orbitals, we find strong self-energy effects on the quasiparticle band structure of monolayer CrBr$_3$ that give a 3.8 eV indirect band gap. Also, excitonic effects dominate the low-energy optical and magneto-optical responses in monolayer CrBr$_3$ where a large exciton binding energy of 2.3 eV is found for the lowest bright exciton state with excitation energy at 1.5 eV. We further find that the magneto-optical signals demonstrate strong dependence on the excitation frequency and substrate refractive index. Our theoretical framework for modelling optical and magneto-optical effects could serve as a powerful theoretical tool for future study of optoelectronic and spintronics devices consisting of van der Waals 2D magnets.



قيم البحث

اقرأ أيضاً

We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B, 76 165106 (2007)] for the electronic structure with the solution of the ladder approximation to the Bethe-Salp eter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the non-local self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW, such as Si, LiF and h-BN, the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental bandgap and spectrum onset.
In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational properties of organometallic cubic perovskite CH3NH3PbI3 using first-principles calculations. For accurate theoretical description, we go beyond conventional density functional theory (DFT), and calculated optical conductivity using relativist quasi-particle (GW) correction. Incorporating these many-body effects, we further solve Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical conductivity near the gap edge. Due to the presence of organic methylammonium cations near the center of the perovskite cell, the system is sensitive to low energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using small displacement approach, and further calculate the infrared absorption (IR) spectra. Qualitatively, our calculations of low-energy phonon frequencies are in good agreement with our terahertz measurements. Therefore, for both energy scales (around 2 eV and 0-20 meV), our calculations reveal the importance of many-body effects and their contributions to the desirable optical properties in the cubic organometallic perovskites system.
We study within the many-body Greens function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at th e self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.
Monolayers of group VA elements have attracted great attention with the rising of black phosphorus. Here, we derive a simple tight-binding model for monolayer grey arsenic, referred as arsenene (ML-As), based on the first-principles calculations with in the partially self-consistent GW0 approach. The resulting band structure derived from the six p-like orbitals coincides with the quasi-particle energy from GW0 calculations with a high accuracy. In the presence of a perpendicular magnetic field, ML-As exhibits two sets of Landau levels linear with respect to the magnetic field and level index. Our numerical calculation of the optical conductivity reveals that the obtained optical gap is very close to the GW0 value and can be effectively tuned by external magnetic field. Thus, our proposed TB model can be used for further large-scale simulations of the electronic, optical and transport properties of ML-As.
301 - Jing Li , Valerio Olevano 2020
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interac tion (CI) and time-dependent Hartree-Fock methods. The comparison is made on all the states we could unambiguously identify from the excitonic wave functions symmetry. At the equilibrium distance $R = 1.4 , a_0$, the GW+BSE energy levels are in good agreement with the exact results, with an accuracy of 0.1~0.2 eV. GW+BSE potential-energy curves are also in good agreement with the CI and the exact result up to $2.3 , a_0$. The solution no longer exists beyond $3.0 , a_0$ for triplets ($4.3 , a_0$ for singlets) due to instability of the ground state. We tried to improve the GW reference ground state by a renormalized random-phase approximation (r-RPA), but this did not solve the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا