ﻻ يوجد ملخص باللغة العربية
The density field reconstruction technique has been widely used for recovering the Baryon Acoustic Oscillation (BAO) feature in galaxy surveys that has been degraded due to nonlinearities. In this paper, we investigate the performance of iterative reconstruction on the BAO and the broadband, focusing on the iterative implementation based on citet{Seo:2010} and citet{Schmittfull:2017}. We include redshift-space distortions, halo bias, and shot noise and inspect the components of the reconstructed field in Fourier space and in configuration space using both density field-based reconstruction and displacement field-based reconstruction. We find that the displacement field reconstruction becomes quickly challenging in the presence of non-negligible shot noise and therefore present surrogate methods that can be practically applied to a much more sparse field such as galaxies. For a galaxy field, implementing a debiasing step to remove the Lagrangian bias appears crucial for the displacement field reconstruction. We show that the iterative reconstruction does not substantially improve the BAO feature beyond an optimized standard reconstruction; however, we find that such aggressive optimization of the standard reconstruction with a small smoothing kernel is achieved at the cost of degradation on large scales while taking iterative steps allows us to use a small smoothing kernel `stably, i.e., without causing a substantial deviation from the linear theory model on large scales.
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be deter
Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, providing distance estimates that are, for the first time, firmly rooted in well-under
We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the
The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the universe leave a distinct peak in the two-point correlation function of the matter distribution. That acoustic peak is smeared and shifted by bulk flows and non-linear evoluti
We investigate constraints on the Hubble constant ($H_0$) using Baryon Acoustic Oscillations (BAO) and baryon density measurements from Big Bang Nucleosynthesis (BBN). We start by investigating the tension between galaxy BAO measurements and those us