ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Realization of Schumachers Information Geometric Bell Inequality

67   0   0.0 ( 0 )
 نشر من قبل Warner A. Miller
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the fuel for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a covariance distance. Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of $V_{ad}=0.970$. We discuss generalizations to higher dimensional multipartite quantum states.



قيم البحث

اقرأ أيضاً

72 - T.N.Palmer 2017
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis tic locally causal system evolving on a measure-zero fractal-like geometry $I_U$ in cosmological state space. Consistent with the assumed primacy of $I_U$, and $p$-adic number theory, a non-Euclidean (and hence non-classical) metric $g_p$ is defined on cosmological state space, where $p$ is a large but finite Pythagorean prime. Using number-theoretic properties of spherical triangles, the inequalities violated experimentally are shown to be $g_p$-distant from the CHSH inequality, whose violation would rule out local realism. This result fails in the singular limit $p=infty$, at which $g_p$ is Euclidean. Broader implications are discussed.
We analyze the geometry of a joint distribution over a set of discrete random variables. We briefly review Shannons entropy, conditional entropy, mutual information and conditional mutual information. We review the entropic information distance formu la of Rokhlin and Rajski. We then define an analogous information area. We motivate this definition and discuss its properties. We extend this definition to higher-dimensional volumes. We briefly discuss the potential utility for these geometric measures in quantum information processing.
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement cha racterization of this hybrid system may also be useful in quantum information applications.
Local realistic models cannot completely describe all predictions of quantum mechanics. This is known as Bells theorem that can be revealed either by violations of Bell inequality, or all-versus-nothing proof of nonlocality. Hardys paradox is an impo rtant all-versus-nothing proof and is considered as the simplest form of Bells theorem. In this work, we theoretically build the general framework of Hardy-type paradox based on Bell inequality. Previous Hardys paradoxes have been found to be special cases within the framework. Stronger Hardy-type paradox has been found even for the two-qubit two-setting case, and the corresponding successful probability is about four times larger than the original one, thus providing a more friendly test for experiment. We also find that GHZ paradox can be viewed as a perfect Hardy-type paradox. Meanwhile, we experimentally test the stronger Hardy-type paradoxes in a two-qubit system. Within the experimental errors, the experimental results coincide with the theoretical predictions.
Entanglement is a critical resource used in many current quantum information schemes. As such entanglement has been extensively studied in two qubit systems and its entanglement nature has been exhibited by violations of the Bell inequality. Can the amount of violation of the Bell inequality be used to quantify the degree of entanglement. What do Bell inequalities indicate about the nature of entanglement?
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا