ﻻ يوجد ملخص باللغة العربية
In this paper, we study asymmetric Ramsey properties of the random graph $G_{n,p}$. Let $r in mathbb{N}$ and $H_1, ldots, H_r$ be graphs. We write $G_{n,p} to (H_1, ldots, H_r)$ to denote the property that whenever we colour the edges of $G_{n,p}$ with colours from the set $[r] := {1, ldots, r}$ there exists $i in [r]$ and a copy of $H_i$ in $G_{n,p}$ monochromatic in colour $i$. There has been much interest in determining the asymptotic threshold function for this property. R{o}dl and Ruci{n}ski determined the threshold function for the general symmetric case; that is, when $H_1 = cdots = H_r$. A conjecture of Kohayakawa and Kreuter, if true, would fully resolve the asymmetric problem. Recently, the 1-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij. Building on work of Marciniszyn, Skokan, Sp{o}hel and Steger, we reduce the 0-statement of Kohayakawa and Kreuters conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the 0-statement for all such pairs of graphs.
The $S$-adic conjecture claims that there exists a condition $C$ such that a sequence has a sub-linear complexity if and only if it is an $S$-adic sequence satisfying Condition $C$ for some finite set $S$ of morphisms. We present an overview of the f
A $k$-uniform tight cycle is a $k$-uniform hypergraph with a cyclic ordering of its vertices such that its edges are all the sets of size $k$ formed by $k$ consecutive vertices in the ordering. We prove that every red-blue edge-coloured $K_n^{(4)}$ c
We consider three graphs, $G_{7,3}$, $G_{7,4}$, and $G_{7,6}$, related to Kellers conjecture in dimension 7. The conjecture is false for this dimension if and only if at least one of the graphs contains a clique of size $2^7 = 128$. We present an aut
A classical result by Rado characterises the so-called partition-regular matrices $A$, i.e. those matrices $A$ for which any finite colouring of the positive integers yields a monochromatic solution to the equation $Ax=0$. We study the {sl asymmetric
We show Kantors conjecture (1974) holds in rank 4. This proves both the sticky matroid conjecture of Poljak and Turzik (1982) and the whole Kantors conjecture, due to an argument of Bachem, Kern, and Bonin, and an equivalence argument of Hochstattler and Wilhelmi, respectively.