ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Scale Temporal Convolution Network for Classroom Voice Detection

144   0   0.0 ( 0 )
 نشر من قبل Lu Ma
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Teaching with the cooperation of expert teacher and assistant teacher, which is the so-called double-teachers classroom, i.e., the course is giving by the expert online and presented through projection screen at the classroom, and the teacher at the classroom performs as an assistant for guiding the students in learning, is becoming more prevalent in todays teaching method for K-12 education. For monitoring the teaching quality, a microphone clipped on the assistants neckline is always used for voice recording, then fed to the downstream tasks of automatic speech recognition (ASR) and neural language processing (NLP). However, besides its voice, there would be some other interfering voices, including the experts one and the students one. Here, we propose to extract the assistant voices from the perspective of sound event detection, i.e., the voices are classified into four categories, namely the expert, the teacher, the mixture of them, and the background. To make frame-level identification, which is important for grabbing sensitive words for the downstream tasks, a multi-scale temporal convolution neural network is constructed with stacked dilated convolutions for considering both local and global properties. These features are concatenated and fed to a classification network constructed by three linear layers. The framework is evaluated on simulated data and real-world recordings, giving considerable performance in terms of precision and recall, compared with some classical classification methods.

قيم البحث

اقرأ أيضاً

Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. To solve this problem, this paper proposes a separable temporal convolution neural network with attention, it has a small number of parameters. Through the time convolution combined with attention mechanism, a small number of parameters model (32.2K) is implemented while maintaining high performance. The proposed model achieves 95.7% accuracy on the Google Speech Commands dataset, which is close to the performance of Res15(239K), the state-of-the-art model in KWS at present.
90 - Lu Ma , Song Yang , Yaguang Gong 2021
Acoustic Echo Cancellation (AEC) plays a key role in speech interaction by suppressing the echo received at microphone introduced by acoustic reverberations from loudspeakers. Since the performance of linear adaptive filter (AF) would degrade severel y due to nonlinear distortions, background noises, and microphone clipping in real scenarios, deep learning has been employed for AEC for its good nonlinear modelling ability. In this paper, we constructed an end-to-end multi-scale attention neural network for AEC. Temporal convolution is first used to transform waveform into spectrogram. The spectrograms of the far-end reference and the near-end mixture are concatenated, and fed to a temporal convolution network (TCN) with stacked dilated convolution layers. Attention mechanism is performed among these representations from different layers to adaptively extract relevant features by referring to the previous hidden state in the encoder long short-term memory (LSTM) unit. The representations are weighted averaged and fed to the encoder LSTM for the near-end speech estimation. Experiments show the superiority of our method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. In this paper, we propose a temporally pooled attentio n module which can capture global features better than the AveragePool. Besides, we design a separable temporal convolution network which leverages depthwise separable and temporal convolution to reduce the number of parameter and calculations. Finally, taking advantage of separable temporal convolution and temporally pooled attention, a efficient neural network (ST-AttNet) is designed for KWS system. We evaluate the models on the publicly available Google speech commands data sets V1. The number of parameters of proposed model (48K) is 1/6 of state-of-the-art TC-ResNet14-1.5 model (305K). The proposed model achieves a 96.6% accuracy, which is comparable to the TC-ResNet14-1.5 model (96.6%).
Thanks to improvements in machine learning techniques, including deep learning, speech synthesis is becoming a machine learning task. To accelerate speech synthesis research, we are developing Japanese voice corpora reasonably accessible from not onl y academic institutions but also commercial companies. In 2017, we released the JSUT corpus, which contains 10 hours of reading-style speech uttered by a single speaker, for end-to-end text-to-speech synthesis. For more general use in speech synthesis research, e.g., voice conversion and multi-speaker modeling, in this paper, we construct the JVS corpus, which contains voice data of 100 speakers in three styles (normal, whisper, and falsetto). The corpus contains 30 hours of voice data including 22 hours of parallel normal voices. This paper describes how we designed the corpus and summarizes the specifications. The corpus is available at our project page.
68 - Shuai Yu , Xiaoheng Sun , Yi Yu 2021
Musical audio is generally composed of three physical properties: frequency, time and magnitude. Interestingly, human auditory periphery also provides neural codes for each of these dimensions to perceive music. Inspired by these intrinsic characteri stics, a frequency-temporal attention network is proposed to mimic human auditory for singing melody extraction. In particular, the proposed model contains frequency-temporal attention modules and a selective fusion module corresponding to these three physical properties. The frequency attention module is used to select the same activation frequency bands as did in cochlear and the temporal attention module is responsible for analyzing temporal patterns. Finally, the selective fusion module is suggested to recalibrate magnitudes and fuse the raw information for prediction. In addition, we propose to use another branch to simultaneously predict the presence of singing voice melody. The experimental results show that the proposed model outperforms existing state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا