ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Nearest Neighbor Machine Translation

86   0   0.0 ( 0 )
 نشر من قبل Jiwei Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Though nearest neighbor Machine Translation ($k$NN-MT) cite{khandelwal2020nearest} has proved to introduce significant performance boosts over standard neural MT systems, it is prohibitively slow since it uses the entire reference corpus as the datastore for the nearest neighbor search. This means each step for each beam in the beam search has to search over the entire reference corpus. $k$NN-MT is thus two-order slower than vanilla MT models, making it hard to be applied to real-world applications, especially online services. In this work, we propose Fast $k$NN-MT to address this issue. Fast $k$NN-MT constructs a significantly smaller datastore for the nearest neighbor search: for each word in a source sentence, Fast $k$NN-MT first selects its nearest token-level neighbors, which is limited to tokens that are the same as the query token. Then at each decoding step, in contrast to using the entire corpus as the datastore, the search space is limited to target tokens corresponding to the previously selected reference source tokens. This strategy avoids search through the whole datastore for nearest neighbors and drastically improves decoding efficiency. Without loss of performance, Fast $k$NN-MT is two-order faster than $k$NN-MT, and is only two times slower than the standard NMT model. Fast $k$NN-MT enables the practical use of $k$NN-MT systems in real-world MT applications.footnote{Code is available at url{https://github.com/ShannonAI/fast-knn-nmt.}}



قيم البحث

اقرأ أيضاً

kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN alg orithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore, which allows them to learn through explicitly memorizing the training datapoints. While effective, these models often require retriev al from a large datastore at test time, significantly increasing the inference overhead and thus limiting the deployment of non-parametric NLMs in practical applications. In this paper, we take the recently proposed $k$-nearest neighbors language model (Khandelwal et al., 2019) as an example, exploring methods to improve its efficiency along various dimensions. Experiments on the standard WikiText-103 benchmark and domain-adaptation datasets show that our methods are able to achieve up to a 6x speed-up in inference speed while retaining comparable performance. The empirical analysis we present may provide guidelines for future research seeking to develop or deploy more efficient non-parametric NLMs.
177 - Deng Cai , Yan Wang , Huayang Li 2021
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
103 - Yizhu Wang , Wenyi Zhang 2020
It is well known that for linear Gaussian channels, a nearest neighbor decoding rule, which seeks the minimum Euclidean distance between a codeword and the received channel output vector, is the maximum likelihood solution and hence capacity-achievin g. Nearest neighbor decoding remains a convenient and yet mismatched solution for general channels, and the key message of this paper is that the performance of the nearest neighbor decoding can be improved by generalizing its decoding metric to incorporate channel state dependent output processing and codeword scaling. Using generalized mutual information, which is a lower bound to the mismatched capacity under independent and identically distributed codebook ensemble, as the performance measure, this paper establishes the optimal generalized nearest neighbor decoding rule, under Gaussian channel input. Several suboptimal but reduced-complexity generalized nearest neighbor decoding rules are also derived and compared with existing solutions. The results are illustrated through several case studies for channels with nonlinear effects, and fading channels with receiver channel state information or with pilot-assisted training.
Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detectio n becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا