ﻻ يوجد ملخص باللغة العربية
Reproducing the capabilities of the human sense of touch in machines is an important step in enabling robot manipulation to have the ease of human dexterity. A combination of robotic technologies will be needed, including soft robotics, biomimetics and the high-resolution sensing offered by optical tactile sensors. This combination is considered here as a SoftBOT (Soft Biomimetic Optical Tactile) sensor. This article reviews the BRL TacTip as a prototypical example of such a sensor. Topics include the relation between artificial skin morphology and the transduction principles of human touch, the nature and benefits of tactile shear sensing, 3D printing for fabrication and integration into robot hands, the application of AI to tactile perception and control, and the recent step-change in capabilities due to deep learning. This review consolidates those advances from the past decade to indicate a path for robots to reach human-like dexterity.
We present a modified TacTip biomimetic optical tactile sensor design which demonstrates the ability to induce and detect incipient slip, as confirmed by recording the movement of markers on the sensors external surface. Incipient slip is defined as
Robotic fingers made of soft material and compliant structures usually lead to superior adaptation when interacting with the unstructured physical environment. In this paper, we present an embedded sensing solution using optical fibers for an omni-ad
Rotational displacement about the grasping point is a common grasp failure when an object is grasped at a location away from its center of gravity. Tactile sensors with soft surfaces, such as GelSight sensors, can detect the rotation patterns on the
This paper proposes a controller for stable grasping of unknown-shaped objects by two robotic fingers with tactile fingertips. The grasp is stabilised by rolling the fingertips on the contact surface and applying a desired grasping force to reach an
To perform complex tasks, robots must be able to interact with and manipulate their surroundings. One of the key challenges in accomplishing this is robust state estimation during physical interactions, where the state involves not only the robot and