ﻻ يوجد ملخص باللغة العربية
We formally prove the existence of a quantization procedure that makes the path integral of a general diffeomorphism-invariant theory of gravity, with fixed total spacetime volume, equivalent to that of its unimodular version. This is achieved by means of a partial gauge fixing of diffeomorphisms together with a careful definition of the unimodular measure. The statement holds also in the presence of matter. As an explicit example, we consider scalar-tensor theories and compute the corresponding logarithmic divergences in both settings. In spite of significant differences in the coupling of the scalar field to gravity, the results are equivalent for all couplings, including non-minimal ones.
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a const
We discuss unimodular gravity at a classical level, and in terms of its extension into the UV through an appropriate path integral representation. Classically, unimodular gravity is simply a gauge fixed version of General Relativity (GR), and as such
We investigate inflation and its scalar perturbation driven by a massive scalar field in the unimodular theory of gravity. We introduce a parameter $xi$ with which the theory is invariant under general unimodular coordinate transformations. When the
Exponential expansion in Unimodular Gravity is possible even in the absence of a constant potential; {em id est} for free fields. This is at variance with the case in General Relativity.
The recently suggested generalized unimodular gravity theory, which was originally put forward as a model of dark energy, can serve as a model of cosmological inflation driven by the effective perfect fluid -- the dark purely gravitational sector of