ترغب بنشر مسار تعليمي؟ اضغط هنا

Drell-Yan angular lepton distributions at small $x$ from TMD factorization

130   0   0.0 ( 0 )
 نشر من قبل Ian Balitsky
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ian Balitsky




اسأل ChatGPT حول البحث

The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region $sgg Q^2gg q_perp^2$ corresponding to recent LHC experiments with $Q^2$ of order of mass of Z-boson and transverse momentum of DY pair $sim$ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with ${1over Q^2}$ and ${1over N_c^2}$ accuracy. It is demonstrated that in the leading order in $N_c$ the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on two leading-twist TMDs: $f_1$ responsible for total DY cross section, and Boer-Mulders function $h_1^perp$. The corresponding qualitative and semi-quantitative predictions seem to agree with LHC data on five angular coefficients $A_0-A_4$ of DY pair production. The remaining three coefficients $A_5-A_7$ are determined by quark-quark-gluon TMDs multiplied by extra ${1over N_c}$ so they appear to be relatively small in accordance with LHC results.



قيم البحث

اقرأ أيضاً

78 - Ian Balitsky 2020
The Drell-Yan hadronic tensor for electromagnetic (EM) current is calculated in the Sudakov region $sgg Q^2gg q_perp^2$ with ${1over Q^2}$ accuracy, first at the tree level and then with the double-log accuracy. It is demonstrated that in the leading order in $N_c$ the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting tensor for unpolarized hadrons is EM gauge-invariant and depends on two leading-twist TMDs: $f_1$ responsible for total DY cross section, and Boer-Mulders function $h_1^perp$. The order-of-magnitude estimates of angular distributions for DY process seem to agree with LHC results at corresponding kinematics.
107 - Alexey Vladimirov 2019
We extract the pion transverse momentum dependent (TMD) parton distribution by fitting the pion-induced Drell-Yan process within the framework of TMD factorization. The analysis is done at the next-to-next-to-leading order (NNLO) with proton TMD dist ribution and non-perturbative TMD evolution extracted earlier in the global fit. We observe the significant difference in the normalization of transverse momentum differential cross-section measured by E615 experiment and the theory prediction.
The lepton angular distributions of the Drell-Yan process in the fixed-target experiments are investigated by NLO and NNLO perturbative QCD. We present the calculated angular parameters $lambda$, $mu$, $ u$ and the degree of violation of the Lam-Tung relation, $1-lambda-2 u$, for the E615 experiment as well as predictions for the COMPASS experiment. Many salient features of transverse momentum and rapidity dependence could be qualitatively understood by a geometric approach.
We present a comparison of data of lepton angular distributions of Drell-Yan/$Z$ production with the fixed-order pQCD calculations by which the baseline of pQCD effects is illustrated. As for the $Z$ production, we predict that $A_0$ and $A_2$ for $Z $ plus single gluon-jet events are very different from that of $Z$ plus single quark-jet events, allowing a new experimental tool for checking various algorithms which attempt to discriminate quark jets from gluon jets. Using an intuitive geometric approach, we show that the violation of the Lam-Tung relation, appearing at large transverse-momentum region, is attributed to the presence of a non-coplanarity effect. This interpretation is consistent with the appearance of violation beyond LO-QCD effect.
The lepton angular distributions of the Drell-Yan process in fixed-target experiments are investigated by NLO and NNLO perturbative QCD. We present the calculated angular parameters $lambda$, $mu$, $ u$ and the degree of violation of the Lam-Tung rel ation, $1-lambda-2 u$, for the NA10, E615 and E866 experiments. Predictions for the ongoing COMPASS and SeaQuest experiments are also presented. The transverse momentum ($q_T$) distributions of $lambda$ and $ u$ show a clear dependence on the dimuon mass ($Q$) while those of $mu$ have a strong rapidity ($x_F$) dependence. Furthermore, $lambda$ and $ u$ are found to scale with $q_T/Q$. These salient features could be qualitatively understood by a geometric approach where the lepton angular distribution parameters are expressed in terms of the polar and azimuthal angles of the natural axis in the dilepton rest frame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا