ترغب بنشر مسار تعليمي؟ اضغط هنا

On Ramanujans Modular Equations and Hecke Groups

136   0   0.0 ( 0 )
 نشر من قبل Md. Shafiul Alam
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Md. Shafiul Alam




اسأل ChatGPT حول البحث

We study the relation between Hecke groups and the modular equations in Ramanujans theories of signature 2, 3 and 4. The solution $(alpha,beta)$ to the generalized modular equation satisfies a polynomial equation $P(alpha,beta)=0$ and we determine the degree in each of $alpha$ and $beta$ of the polynomial $P(alpha,beta)$ explicitly. We establish some mutually equivalent statements related to Hecke subgroups and modular equations, and prove that $(1-beta, 1-alpha)$ is also a solution to the generalized modular equation and $P(1-beta, 1-alpha)=0$.



قيم البحث

اقرأ أيضاً

We formulate some properties of a conjectural object $X_{fun}(r,n)$ parametrizing Anderson t-motives of dimension $n$ and rank $r$. Namely, we give formulas for $goth p$-Hecke correspondences of $X_{fun}(r,n)$ and its reductions at $goth p$ (where $g oth p$ is a prime of $Bbb F_q[theta]$). Also, we describe their geometric interpretation. These results are analogs of the corresponding results of reductions of Shimura varieties. Finally, we give conjectural formulas for Hodge numbers (over the fields generated by Hecke correspondences) of middle cohomology submotives of $X_{fun}(r,n)$.
We investigate non-vanishing properties of $L(f,s)$ on the real line, when $f$ is a Hecke eigenform of half-integral weight $k+{1over 2}$ on $Gamma_0(4).$
123 - S. Chandankumar 2020
In the proposed work, we establish a total of six new $P$--$Q$ modular equations involving theta--function $f(-q)$ with moduli of orders 1, 3, 7 and 21.These equations can be regarded as modular identities in the alternate theory of signature 3. As a consequence, several values of quotients of theta--function are evaluated.
142 - Rukmini Dey 2015
Using Ramanujans identities and the Weierstrass-Enneper representation of minimal surfaces and the analogue for Born-Infeld solitons, we derive further non-trivial identities.
We define a new parameter $A_{k,n}$ involving Ramanujans theta-functions for any positive real numbers $k$ and $n$ which is analogous to the parameter $A_{k,n}$ defined by Nipen Saikia cite{NS1}. We establish some modular relation involving $A_{k,n}$ and $A_{k,n}$ to find some explicit values of $A_{k,n}$. We use these parameters to establish few general theorems for explicit evaluations of ratios of theta functions involving $varphi(q)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا