ﻻ يوجد ملخص باللغة العربية
In this work, we use the framework of effective field theory to couple Einsteins Gravity to Quantum Electrodynamics (QED) and determine the gravitational corrections to the two-loop beta function of the electric charge. Our results indicate that gravitational corrections do not alter the running behavior of the electric charge; on the contrary, we observe that it gives a positive contribution to the beta function, making the electric charge grow faster. The opposite occurs to the $lambda$ beta function in the Einstein-Scalar-QED system, where at one-loop order we observe that gravity gives a negative contribution to the $lambda$ beta function, indicating that, if the scalar particle has a mass a few orders below Planck scale, $lambda$ can be asymptotically free.
The Maxwell-Chern-Simons gauge theory with charged scalar fields is analyzed at two loop level. The effective potential for the scalar fields is derived in the closed form, and studied both analytically and numerically. It is shown that the U(1) symm
We renormalize a six dimensional cubic theory to four loops in the MSbar scheme where the scalar is in a bi-adjoint representation. The underlying model was originally derived in a problem relating to gravity being a double copy of Yang-Mills theory.
Higgs inflation and $R^2$-inflation (Starobinsky model) are two limits of the same quantum model, hereafter called Starobinsky-Higgs. We analyse the two-loop action of the Higgs-like scalar $phi$ in the presence of: 1) non-minimal coupling ($xi$) and
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general
Two and three loop alpha corrections are calculated for Kasner and Schwarzschild metrics, and their T-duals, in the bosonic string theory. These metrics are used to obtain the two and three loop alpha corrections to T-duality. It is noted in particul