ﻻ يوجد ملخص باللغة العربية
Quantum mechanics is well known to accelerate statistical sampling processes over classical techniques. In quantitative finance, statistical samplings arise broadly in many use cases. Here we focus on a particular one of such use cases, credit valuation adjustment (CVA), and identify opportunities and challenges towards quantum advantage for practical instances. To improve the depths of quantum circuits for solving such problem, we draw on various heuristics that indicate the potential for significant improvement over well-known techniques such as reversible logical circuit synthesis. In minimizing the resource requirements for amplitude amplification while maximizing the speedup gained from the quantum coherence of a noisy device, we adopt a recently developed Bayesian variant of quantum amplitude estimation using engineered likelihood functions (ELF). We perform numerical analyses to characterize the prospect of quantum speedup in concrete CVA instances over classical Monte Carlo simulations.
We present a detailed analysis of interest rate derivatives valuation under credit risk and collateral modeling. We show how the credit and collateral extended valuation framework in Pallavicini et al (2011), and the related collateralized valuation
Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FBSDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives, including
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves
Credit value adjustment (CVA) is the charge applied by financial institutions to the counterparty to cover the risk of losses on a counterpart default event. In this paper we estimate such a premium under the Bates stochastic model (Bates [4]), which
Visual tracking (VT) is the process of locating a moving object of interest in a video. It is a fundamental problem in computer vision, with various applications in human-computer interaction, security and surveillance, robot perception, traffic cont