ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum algorithm for credit valuation adjustments

193   0   0.0 ( 0 )
 نشر من قبل Yudong Cao
 تاريخ النشر 2021
  مجال البحث فيزياء مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanics is well known to accelerate statistical sampling processes over classical techniques. In quantitative finance, statistical samplings arise broadly in many use cases. Here we focus on a particular one of such use cases, credit valuation adjustment (CVA), and identify opportunities and challenges towards quantum advantage for practical instances. To improve the depths of quantum circuits for solving such problem, we draw on various heuristics that indicate the potential for significant improvement over well-known techniques such as reversible logical circuit synthesis. In minimizing the resource requirements for amplitude amplification while maximizing the speedup gained from the quantum coherence of a noisy device, we adopt a recently developed Bayesian variant of quantum amplitude estimation using engineered likelihood functions (ELF). We perform numerical analyses to characterize the prospect of quantum speedup in concrete CVA instances over classical Monte Carlo simulations.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of interest rate derivatives valuation under credit risk and collateral modeling. We show how the credit and collateral extended valuation framework in Pallavicini et al (2011), and the related collateralized valuation measure, can be helpful in defining the key market rates underlying the multiple interest rate curves that characterize current interest rate markets. A key point is that spot Libor rates are to be treated as market primitives rather than being defined by no-arbitrage relationships. We formulate a consistent realistic dynamics for the different rates emerging from our analysis and compare the resulting model performances to simpler models used in the industry. We include the often neglected margin period of risk, showing how this feature may increase the impact of different rates dynamics on valuation. We point out limitations of multiple curve models with deterministic basis considering valuation of particularly sensitive products such as basis swaps. We stress that a proper wrong way risk analysis for such products requires a model with a stochastic basis and we show numerical results confirming this fact.
Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FBSDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible dynamics of a local Levy model: this framework includes a local volatility function and a local jump measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic approximation based on the adjoint formulation of the problem.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
Credit value adjustment (CVA) is the charge applied by financial institutions to the counterparty to cover the risk of losses on a counterpart default event. In this paper we estimate such a premium under the Bates stochastic model (Bates [4]), which considers an underlying affected by both stochastic volatility and random jumps. We propose an efficient method which improves the finite-difference Monte Carlo (FDMC) approach introduced by de Graaf et al. [11]. In particular, the method we propose consists in replacing the Monte Carlo step of the FDMC approach with a finite difference step and the whole method relies on the efficient solution of two coupled partial integro-differential equations (PIDE) which is done by employing the Hybrid Tree-Finite Difference method developed by Briani et al. [6, 7, 8]. Moreover, the direct application of the hybrid techniques in the original FDMC approach is also considered for comparison purposes. Several numerical tests prove the effectiveness and the reliability of the proposed approach when both European and American options are considered.
Visual tracking (VT) is the process of locating a moving object of interest in a video. It is a fundamental problem in computer vision, with various applications in human-computer interaction, security and surveillance, robot perception, traffic cont rol, etc. In this paper, we address this problem for the first time in the quantum setting, and present a quantum algorithm for VT based on the framework proposed by Henriques et al. [IEEE Trans. Pattern Anal. Mach. Intell., 7, 583 (2015)]. Our algorithm comprises two phases: training and detection. In the training phase, in order to discriminate the object and background, the algorithm trains a ridge regression classifier in the quantum state form where the optimal fitting parameters of ridge regression are encoded in the amplitudes. In the detection phase, the classifier is then employed to generate a quantum state whose amplitudes encode the responses of all the candidate image patches. The algorithm is shown to be polylogarithmic in scaling, when the image data matrices have low condition numbers, and therefore may achieve exponential speedup over the best classical counterpart. However, only quadratic speedup can be achieved when the algorithm is applied to implement the ultimate task of Henriquess framework, i.e., detecting the object position. We also discuss two other important applications related to VT: (1) object disappearance detection and (2) motion behavior matching, where much more significant speedup over the classical methods can be achieved. This work demonstrates the power of quantum computing in solving computer vision problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا