ترغب بنشر مسار تعليمي؟ اضغط هنا

Active spintronic-metasurface terahertz emitters with tunable chirality

418   0   0.0 ( 0 )
 نشر من قبل Zhensheng Tao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to manipulate the electric-field vector of broadband terahertz waves is essential for applications of terahertz technologies in many areas, and can open up new possibilities for nonlinear terahertz spectroscopy and coherent control. Here, we propose a novel laser-driven terahertz emitter, consisting of metasurface-patterned magnetic multilayer heterostructures. Such hybrid terahertz emitters can combine the advantages of spintronic emitters for being ultrabroadband, efficient and flexible, as well as those of metasurfaces for the unique capability to manipulate terahertz waves with high precision and degree of freedom. Taking a stripe-patterned metasurface as an example, we demonstrate the generation of broadband terahertz waves with tunable chirality. Based on experimental and theoretical studies, the interplay between the laser-induced spintronic-origin currents and the metasurface-induced transient charges/currents are investigated, revealing the strong influence on the device functionality originated from both the light-matter interactions in individual metasurface units and the dynamic coupling between them. Our work not only offers a flexible, reliable and cost-effective solution for chiral terahertz wave generation and manipulation, but also opens a new pathway to metasurface-tailored spintronic devices for efficient vector-control of electromagnetic waves in the terahertz regime.



قيم البحث

اقرأ أيضاً

A special class of anisotropic media, hyperbolic metamaterials and metasurfaces (HMMs), has attracted much attention in recent years due to its unique abilities to manipulate and engineer electromagnetic waves on the subwavelength scale. Because all HMM designs require metal dielectric composites, the unavoidable metal loss at optical frequencies inspired the development of active HMMs, where gain materials is incorporated to compensate the metal loss. Here, we experimentally demonstrate an active type II HMM that operates at vacuum wavelength near 750 nm on a silicon platform. Different from previous active HMMs operating below 1 {mu}m, the dielectric constituent in our HMM is solely composed of gain medium, by utilizing solution processed and widely tunable metal halide perovskite gain. Thanks to the facile fabrication, tunability and silicon compatibility of our active HMM, this work paves the way towards HMMs integration into on chip components, and eventually, into photonic integrated circuits.
Flexible manipulation of terahertz-wave polarization during the generation process is very important for terahertz applications, especially for the next-generation on-chip functional terahertz sources. However, current terahertz emitters could not sa tisfy such demand, hence calling for new mechanism and conceptually new terahertz source. Here we demonstrate a magnetic-field-controlled, highly-efficient, cost-effective, and broadband terahertz source with flexible switch of terahertz polarization states in ferromagnetic heterostructures driven by femtosecond laser pulses. We verify that the chirality, azimuthal angle, and ellipticity of the generated elliptical terahertz waves can be independently manipulated by delicately engineering of the external applied magnetic fields via effectively manipulating the photo-induced spin currents. Such an ultrafast photomagnetic interaction-based, magnetic-field-controlled, and broadband tunable solid-state terahertz source integrated with terahertz polarization tunability function not only has the capability to reveal physical mechanisms of femtosecond spin dynamics, but also demonstrates the feasibility to realize novel on-chip terahertz functional devices, boosting the potential applications for controlling elementary molecular rotations, phonon vibrations, spin precessions, high-speed terahertz communication, and accelerating the development of ultrafast terahertz opto-spintronics.
The incorporation of materials with controllable electromagnetic constitutive parameters allows the conceptualization and realization of controllable metasurfaces. With the aim of formulating and investigating a tricontrollable metasurface for effici ently absorbing terahertz radiation, we adopted a pixel-based approach in which the meta-atoms are biperiodic assemblies of discrete pixels. We patched some pixels with indium antimonide (InSb) and some with graphene, leaving the others unpatched. The bottom of each meta-atom was taken to comprise a metal-backed substrate of silicon nitride. The InSb-patched pixels facilitate the thermal and magnetic control modalities, whereas the graphene-patched pixels facilitate the electrical control modality. With proper configuration of patched and unpatched pixels and with proper selection of the patching material for each patched pixel, the absorptance spectrums of the pixelated metasurface were found to contain peak-shaped features with maximum absorptance exceeding 0.95, full-width-at-half-maximum bandwidth of less than 0.7~THz, and the maximum-absorptance frequency lying between 2~THz and 4~THz. The location of the maximum-absorptance frequency can be thermally, magnetically, and electrically controllable. The lack of rotational invariance of the optimal meta-atom adds mechanical rotation as the fourth control modality.
Optical metamaterials and metasurfaces which emerged in the course of the last few decades have revolutionized our understanding of light and light-matter interaction. While solid materials are naturally employed as key building elements for construc tion of optical metamaterials mainly due to their structural stability, practically no attention was given to study of liquid-made optical 2D metasurfaces and the underlying interaction regimes between surface optical modes and liquids. In this work, we theoretically demonstrate that surface plasmon polaritons and slab waveguide modes that propagate within a thin liquid dielectric film, trigger optical self-induced interaction facilitated by surface tension effects, which lead to formation of 2D optical liquid-made lattices/metasurfaces with tunable symmetry and which can be leveraged for tuning of lasing modes. Furthermore, we show that the symmetry breaking of the 2D optical liquid lattice leads to phase transition and tuning of its topological properties which allows to form, destruct and move Dirac-points in the k-space. Our results indicate that optical liquid lattices support extremely low lasing threshold relative to solid dielectric films and have the potential to serve as configurable analogous computation platform.
Significant progress has been made in answering fundamental questions about how and, more importantly, on what time scales interactions between electrons, spins, and phonons occur in solid state materials. These complex interactions are leading to th e first real applications of terahertz (THz) spintronics: THz emitters that can compete with traditional THz sources and provide additional functionalities enabled by the spin degree of freedom. This tutorial article is intended to provide the background necessary to understand, use, and improve THz spintronic emitters. A particular focus is the introduction of the physical effects that underlie the operation of spintronic THz emitters. These effects were, for the most part, first discovered through traditional spin-transport and spintronic studies. We therefore begin with a review of the historical background and current theoretical understanding of ultrafast spin physics that has been developed over the past twenty-five years. We then discuss standard experimental techniques for the characterization of spintronic THz emitters and - more broadly - ultrafast magnetic phenomena. We next present the principles and methods of the synthesis and fabrication of various types of spintronic THz emitters. Finally, we review recent developments in this exciting field including the integration of novel material platforms such as topological insulators as well as antiferromagnets and materials with unconventional spin textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا