ﻻ يوجد ملخص باللغة العربية
We say that a set of pairs of disjoint cycles $Lambda(G)$ of a graph $G$ is linked if for any spatial embedding $f$ of $G$ there exists an element $lambda$ of $Lambda(G)$ such that the $2$-component link $f(lambda)$ is nonsplittable, and also say minimally linked if none of its proper subsets are linked. In this paper, we show that: (1) the set of all pairs of disjoint cycles of $G$ is minimally linked if and only if $G$ is essentially same as a graph in the Petersen family, and (2) for any two integers $p,qge 3$, we exhibit a minimally linked set of Hamiltonian $(p,q)$-pairs of cycles of the complete graph $K_{p+q}$ with at most eighteen elements.
There are many studies about twisted Alexander invariants for knots and links, but calculations of twisted Alexander invariants for spatial graphs, handlebody-knots, and surface-links have not been demonstrated well. In this paper, we give some remar
We introduce a new equivalence relation on decorated ribbon graphs, and show that its equivalence classes directly correspond to virtual links. We demonstrate how this correspondence can be used to convert any invariant of virtual links into an invariant of ribbon graphs, and vice versa.
This is a short review article on invariants of spatial graphs, written for A Concise Encyclopedia of Knot Theory (ed. Adams et. al.). The emphasis is on combinatorial and polynomial invariants of spatial graphs, including the Alexander polynomial, t
The symmetries of complex molecular structures can be modeled by the {em topological symmetry group} of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can be realized by particular abstract gr
A {em balanced} spatial graph has an integer weight on each edge, so that the directed sum of the weights at each vertex is zero. We describe the Alexander module and polynomial for balanced spatial graphs (originally due to Kinoshita cite{ki}), and