ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams

55   0   0.0 ( 0 )
 نشر من قبل Laurent Gremillet
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to their high cost of acquisition and operation, there are still a limited number of high-yield, high-flux neutron source facilities worldwide. In this context, laser-driven neutron sources offer a promising, cheaper alternative to those based on large-scale accelerators, with, in addition, the potential of generating compact neutron beams of high brightness and ultra-short duration. In particular, the predicted capability of next-generation petawatt (PW)-class lasers to accelerate protons beyond the 100 MeV range should unlock efficient neutron generation through spallation reactions. In this paper, this scenario is investigated numerically through particle-in-cell and Monte Carlo simulations, modeling, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary heavy-ion targets. Laser parameters relevant to the 1 PW LMJ-PETAL and 1-10 PW Apollon systems are considered. Under such conditions, neutron fluxes exceeding $10^{23},rm n,cm^{-2},s^{-1}$ are predicted, opening up attractive fundamental and applicative prospects.



قيم البحث

اقرأ أيضاً

Dielectric structures driven by laser-generated terahertz (THz) pulses may hold the key to overcoming the technological limitations of conventional particle accelerators and with recent experimental demonstrations of acceleration, compression and str eaking of low-energy (sub-100 keV) electron beams, operation at relativistic beam energies is now essential to realize the full potential of THz-driven structures. We present the first THz-driven linear acceleration of relativistic 35 MeV electron bunches, exploiting the collinear excitation of a dielectric-lined waveguide driven by the longitudinal electric field component of polarization-tailored, narrowband THz pulses. Our results pave the way to unprecedented control over relativistic electron beams, providing bunch compression for ultrafast electron diffraction, energy manipulation for bunch diagnostics, and ultimately delivering high-field gradients for compact THz-driven particle acceleration.
Intense laser-driven proton pulses, inherently broadband and highly divergent, pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for 3D. Here we experimentally show the succ essful implementation of a highly efficient (50% transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous (8.5% uniformity laterally and in depth) volumetric dose distribution (cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7 Gy via multi-energy slice selection from the broad input spectrum. The experiments have been conducted at the Petawatt beam of the Dresden Laser Acceleration Source Draco and were aided by a predictive simulation model verified by proton transport studies. With the characterised beamline we investigated manipulation and matching of lateral and depth dose profiles to various desired applications and targets. Using a specifically adapted dose profile, we successfully performed first proof-of-concept laser-driven proton irradiation studies of volumetric in-vivo normal tissue (zebrafish embryos) and in-vitro tumour tissue (SAS spheroids) samples.
59 - A. Hannasch , L. Lisi , J. Brooks 2021
We reconstruct spectra of secondary x-rays generated from a 500 MeV - 2 GeV laser plasma electron accelerator. A compact (7.5 $times$ 7.5 $times$ 15 cm), modular x-ray calorimeter made of alternating layers of absorbing materials and imaging plates r ecords the single-shot x-ray depth-energy distribution. X-rays range from few-MeV inverse Compton scattered x-rays to $sim$100 MeV average bremsstrahlung energies and are characterized individually by the same calorimeter detector. Geant4 simulations of energy deposition from mono-energetic x-rays in the stack generate an energy-vs-depth response matrix for the given stack configuration. A fast, iterative reconstruction algorithm based on analytic models of inverse Compton scattering and bremsstrahlung photon energy distributions then unfolds x-ray spectra in $sim10$ seconds.
The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last deca des. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Julich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and $^{3}$He ions are now being built in Julich. Proof-of-principle measurements at the (multi-)PW laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.
We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide ga s, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio $sim$ 94% are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا