ﻻ يوجد ملخص باللغة العربية
Optimization-based state estimation is useful for handling of constrained linear or nonlinear dynamical systems. It has an ideal form, known as full information estimation (FIE) which uses all past measurements to perform state estimation, and also a practical counterpart, known as moving-horizon estimation (MHE) which uses most recent measurements of a limited length to perform the estimation. Due to the theoretical ideal, conditions for robust stability of FIE are relatively easier to establish than those for MHE, and various sufficient conditions have been developed in literature. This work reveals a generic link from robust stability of FIE to that of MHE, showing that the former implies at least a weaker robust stability of MHE which implements a long enough horizon. The implication strengthens to strict robust stability of MHE if the system satisfies a mild Lipschitz continuity or equivalently a robust exponential stability condition. The revealed implications are then applied to derive new sufficient conditions for robust stability of MHE, which further reveal an intrinsic relation between the existence of a robustly stable FIE/MHE and the system being incrementally input/output-to-state stable.
Estimating and reacting to external disturbances is of fundamental importance for robust control of quadrotors. Existing estimators typically require significant tuning or training with a large amount of data, including the ground truth, to achieve s
The paper deals with state estimation of a spatially distributed system given noisy measurements from pointwise-in-time-and-space threshold sensors spread over the spatial domain of interest. A Maximum A posteriori Probability (MAP) approach is under
Optimization-based state estimation is useful for nonlinear or constrained dynamic systems for which few general methods with established properties are available. The two fundamental forms are moving horizon estimation (MHE) which uses the nearest m
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date, one o
We point out a limitation of the mutual information neural estimation (MINE) where the network fails to learn at the initial training phase, leading to slow convergence in the number of training iterations. To solve this problem, we propose a faster