ﻻ يوجد ملخص باللغة العربية
GCIRS 7, the brightest star in the Galactic central parsec, formed $6pm2$ Myr ago together with dozens of massive stars in a disk orbiting the central black-hole. It has been argued that GCIRS 7 is a pulsating body, on the basis of photometric variability. We present the first medium-resolution ($R=500$), K-band spectro-interferometric observations of GCIRS 7, using the GRAVITY instrument with the four auxiliary telescopes of the ESO VLTI. We looked for variations using two epochs, namely 2017 and 2019. We find GCIRS 7 to be moderately resolved with a uniform-disk photospheric diameter of $theta^*_text{UD}=1.55 pm 0.03$ mas ($R^*_text{UD}=1368 pm 26$ $R_odot$) in the K-band continuum. The narrow-band uniform-disk diameter increases above 2.3 $mu$m, with a clear correlation with the CO band heads in the spectrum. This correlation is aptly modeled by a hot ($T_text{L}=2368pm37$ K), geometrically thin molecular shell with a diameter of $theta_text{L}=1.74pm0.03$ mas, as measured in 2017. The shell diameter increased ($theta_text{L}=1.89pm0.03$ mas), while its temperature decreased ($T_text{L}=2140pm42$ K) in 2019. In contrast, the photospheric diameter $theta^*_text{UD}$ and the extinction up to the photosphere of GCIRS 7 ($A_{mathrm{K}_mathrm{S}}=3.18 pm 0.16$) have the same value within uncertainties at the two epochs. In the context of previous interferometric and photo-spectrometric measurements, the GRAVITY data allow for an interpretation in terms of photospheric pulsations. The photospheric diameter measured in 2017 and 2019 is significantly larger than previously reported using the PIONIER instrument ($theta_*=1.076 pm 0.093$ mas in 2013 in the H band). The parameters of the photosphere and molecular shell of GCIRS 7 are comparable to those of other red supergiants that have previously been studied using interferometry.
The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain th
Context. Red supergiant stars possess surface features and extended molecular atmospheres. Photospheric convection may be a crucial factor of the levitation of the outer atmospheric layers. However, the mechanism responsible is still poorly understoo
We investigate the red supergiant (RSG) population of M31, obtaining radial velocities of 255 stars. These data substantiate membership of our photometrically-selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be
We examine the problem of estimating the mass range corresponding to the observed red supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed to reproduce the properties of the observations, we find that the approa
We identify red supergiants (RSGs) in our spiral neighbors M31 and M33 using near-IR (NIR) photometry complete to a luminosity limit of log L/Lo=4.0. Our archival survey data cover 5 deg^2 of M31, and 3 deg^2 for M33, and are likely spatially complet