ترغب بنشر مسار تعليمي؟ اضغط هنا

Lookahead Acquisition Functions for Finite-Horizon Time-Dependent Bayesian Optimization and Application to Quantum Optimal Control

56   0   0.0 ( 0 )
 نشر من قبل S. Ashwin Renganathan
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel Bayesian method to solve the maximization of a time-dependent expensive-to-evaluate stochastic oracle. We are interested in the decision that maximizes the oracle at a finite time horizon, given a limited budget of noisy evaluations of the oracle that can be performed before the horizon. Our recursive two-step lookahead acquisition function for Bayesian optimization makes nonmyopic decisions at every stage by maximizing the expected utility at the specified time horizon. Specifically, we propose a generalized two-step lookahead framework with a customizable emph{value} function that allows users to define the utility. We illustrate how lookahea



قيم البحث

اقرأ أيضاً

We aim to generalize the results of Cai and Nitta (2007) by allowing both the utility and production function to depend on time. We also consider an additional intertemporal optimality criterion. We clarify the conditions under which the limit of the solutions for the finite horizon problems is optimal among all attainable paths for the infinite horizon problems under the overtaking criterion, as well as the conditions under which such a limit is the unique optimum under the sum-of-utilities criterion. The results are applied to a parametric example of the one-sector growth model to examine the impacts of discounting on optimal paths.
We aim to construct the optimal solutions to the undiscounted continuous-time infinite horizon optimization problems, the objective functionals of which may be unbounded. We identify the condition under which the limit of the solutions to the finite horizon problems is optimal for the infinite horizon problems under the overtaking criterion.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit e horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
206 - Xiongfei Jian , Xun Li , Fahuai Yi 2014
In this paper, we investigate dynamic optimization problems featuring both stochastic control and optimal stopping in a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic op timal control and stopping problems in the existing literature, to study a managers decision. We formulate our model to a free boundary problem of a fully nonlinear equation. Furthermore, by means of a dual transformation for the above problem, we convert the above problem to a new free boundary problem of a linear equation. Finally, we apply the theoretical results to challenging, yet practically relevant and important, risk-sensitive problems in wealth management to obtain the properties of the optimal strategy and the right time to achieve a certain level over a finite time investment horizon.
In this article, we are interested in the analysis and simulation of solutions to an optimal control problem motivated by population dynamics issues. In order to control the spread of mosquito-borne arboviruses, the population replacement technique c onsists in releasing into the environment mosquitoes infected with the Wolbachia bacterium, which greatly reduces the transmission of the virus to the humans. Spatial releases are then sought in such a way that the infected mosquito population invades the uninfected mosquito population. Assuming very high mosquito fecundity rates, we first introduce an asymptotic model on the proportion of infected mosquitoes and then an optimal control problem to determine the best spatial strategy to achieve these releases. We then analyze this problem, including the optimality of natural candidates and carry out first numerical simulations in one dimension of space to illustrate the relevance of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا