ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Control of Cooperative Photon Emission from Indistinguishable Quantum Emitters

165   0   0.0 ( 0 )
 نشر من قبل Zhe Xian Koong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photon-mediated interactions between atomic systems are the cornerstone of quantum information transfer. They can arise via coupling to a common electromagnetic mode or by quantum interference. This can manifest in cooperative light-matter coupling, yielding collective rate enhancements such as those at the heart of superradiance, or remote entanglement via measurement-induced path erasure. Here, we report coherent control of cooperative emission arising from two distant but indistinguishable solid-state emitters due to path erasure. The primary signature of cooperative emission, the emergence of bunching at zero-delay in an intensity correlation experiment, is used to characterise the indistinguishability of the emitters, their dephasing, and the degree of correlation in the joint system which can be coherently controlled. In a stark departure from a pair of uncorrelated emitters, we observe photon statistics resembling that of a weak coherent state in Hong-Ou-Mandel type interference measurements. Our experiments establish new techniques to control and characterize cooperative behaviour between matter qubits using the full quantum optics toolbox, a key stepping stone on the route to realising large-scale quantum photonic networks.

قيم البحث

اقرأ أيضاً

The desire to produce high-quality single photons for applications in quantum information science has lead to renewed interest in exploring solid-state emitters in the weak excitation regime. Under these conditions it is expected that photons are coh erently scattered, and so benefit from a substantial suppression of detrimental interactions between the source and its surrounding environment. Nevertheless, we demonstrate here that this reasoning is incomplete, as phonon interactions continue to play a crucial role in determining solid-state emission characteristics even for very weak excitation. We find that the sideband resulting from non-Markovian relaxation of the phonon environment is excitation strength independent. It thus leads to an intrinsic limit to the fraction of coherently scattered light and to the visibility of two-photon coalescence at weak driving, both of which are absent for atomic systems or within simpler Markovian treatments.
We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increas ing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well distinguished statistical properties of the emitted radiation. For small cavity decay rate, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared to the emitter-cavity coupling) and for few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-art techniques of Q-switch of resonant cavities, allied with the recent capability to tune single emitters in and out of resonance, suggest this system as a versatile source of different quantum states of light.
We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic osc illator or a two-level system) and the various combinations that arise from their coupling. We consider both the linear and nonlinear regimes under incoherent excitation. We find that even the simplest systems display a rich dynamics of emission, not accessible by simple single photon spectroscopy. In the strong coupling regime, novel two-photon emission processes involving virtual states are revealed. Furthermore, two general results are unraveled by two-photon correlations with narrow linewidth detectors: i) filtering induced bunching and ii) breakdown of the semi-classical theory. We show how to overcome this shortcoming in a fully-quantized picture.
Single photons are the natural link between the nodes of a quantum network: they coherently propagate and interact with many types of quantum bits including natural and artificial atoms. Ideally, one atom should deterministically control the state of a photon and vice-versa. The interaction between free space photons and an atom is however intrinsically weak and many efforts have been dedicated to develop an efficient interface. Recently, it was shown that the propagation of light can be controlled by an atomic resonance coupled to a cavity or a single mode waveguide. Here we demonstrate that the state of a single artificial atom in a cavity can be efficiently controlled by a few-photon pulse. We study a quantum dot optimally coupled to an electrically-controlled cavity device, acting as a near optimal one-dimensional atom. By monitoring the exciton population through resonant fluorescence, we demonstrate Rabi oscillations with a $pi$-pulse of only 3.8 photons on average. The probability to flip the exciton quantum bit with a single photon Fock state is calculated to reach 55% in the same device.
We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically-detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enablin g background-free photon extraction from the emitter. Paradoxically, we find that excitation is not possible without spectral overlap between the exciting pulse and the quantum emitter transition for ideal two-level systems due to cancellation of the accumulated pulse area. However, any additional interactions that interfere with cancellation of the accumulated pulse area may lead to a finite stationary population inversion. Our spectroscopic results of a solid-state two-level system show that while coupling to lattice vibrations helps to improve the inversion efficiency up to 50% under symmetric driving, coherent population control and a larger amount of inversion are possible using asymmetric dichromatic excitation, which we achieve by adjusting the ratio of the intensities between the red and blue-detuned pulses. Our measured results, supported by simulations using a real-time path-integral method, offer a new perspective towards realising efficient, background-free photon generation and extraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا