ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Coupling Theory of Magic-Angle Graphene: A Pedagogical Introduction

54   0   0.0 ( 0 )
 نشر من قبل Eslam Khalaf
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a self contained review of a recently developed strong coupling theory of magic-angle graphene. An advantage of this approach is that a single formulation can capture both the insulating and superconducting states, and with a few simplifying assumptions, can be treated analytically. We begin by reviewing the electronic structure of magic angle graphenes flat bands, in a limit that exposes their peculiar band topology and geometry. We highlight how similarities between the flat bands and the lowest Landau level give insight into the effect of interactions. For example, at certain fractional fillings, we note the promise for realizing fractional Chern states. At integer fillings, this approach points to flavor ordered insulators, which can be captured by a sigma-model in its ordered phase. Unexpectedly, topological textures of the sigma model carry electric charge which allows us to extend the same theory to describe the doped phases away from integer filling. We show how this approach can lead to superconductivity on disordering the sigma model, and estimate the T$_c$ for the superconductor. We highlight the important role played by an effective super-exchange coupling both in pairing and in setting the effective mass of Cooper pairs. Seeking to enhance this coupling helps predict new superconducting platforms, including the recently discovered alternating twist trilayer platform. We also contrast our proposal from strong coupling theories for other superconductors.

قيم البحث

اقرأ أيضاً

We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their e nergies and symmetry quantum numbers in detail. To study the soft mode spectra, we employ time dependent Hartree-Fock whose results are reproduced analytically via an effective sigma model description. We find two different types of low-energy modes - (i) approximate Goldstone modes associated with breaking an enlarged U(4)$times$U(4) symmetry and, surprisingly, a set of (ii) nematic modes with non-zero angular momentum under three-fold rotation. The modes of type (i) include true gapless Goldstone modes associated with exact symmetries in addition to gapped pseudo-Goldstone modes associated with approximate symmetries. While the modes of type (ii) are always gapped, we show that their gap decreases as the Berry curvature grows more concentrated. For realistic parameter values, the gapped soft modes of both types have comparable gaps of only a few meV, and lie completely inside the mean-field bandgap. The entire set of soft modes emerge as Goldstone modes of a different idealized model in which Berry flux is limited to a solenoid, which enjoys an enlarged U(8) symmetry. Furthermore, we discuss the number of Goldstone modes for each symmetry-broken state, distinguishing the linearly vs quadratically dispersing modes. Finally, we present a general symmetry analysis of the soft modes for all possible insulating Slater determinant states at integer fillings that preserve translation symmetry, independent of the energetic details. The resulting soft mode degeneracies and symmetry quantum numbers provide a fingerprint of the different insulting states enabling their experimental identification from a measurement of their soft modes.
We show that the insulating states of magic-angle twisted bilayer graphene support a series of collective modes corresponding to local particle-hole excitations on triangular lattice sites. Our theory is based on a continuum model of the magic angle flat bands. When the system is insulating at moire band filling $ u=-3$, our calculations show that the ground state supports seven low-energy modes that lie well below the charge gap throughout the moire Brillouin zone, one of which couples strongly to THz photons. The low-energy collective modes are faithfully described by a model with a local $SU(8)$ degree of freedom in each moire unit cell that we identify as the direct product of spin, valley, and an orbital pseudospin. Apart from spin and valley-wave modes, the collective mode spectrum includes a low-energy intra-flavor exciton mode associated with transitions between flat valence and conduction band orbitals.
Spontaneous symmetry breaking plays a pivotal role in many areas of physics, engendering a variety of excitations from sound modes in solids to pions in nuclear physics. Equally important excitations are solitons, nonlinear configurations of the symm etry breaking field, which can enjoy exceptional stability as in the Skyrme model of nuclear forces. Here we argue that similar models may describe magic angle graphene, a remarkable new material . When the angle between two sheets of graphene is near the magic angle of $sim 1^circ$, insulating behavior is observed, which gives way to superconductivity on changing the electron density. We propose a unifying description of both the order underlying the insulator as well as the superconductor. While the symmetry breaking condensate leads to the ordered phase, topological solitons in the condensate - skyrmions - are shown to be bosons that carry an electric charge of 2e. Condensation of skyrmions leads to a superconductor whose pairing strength, symmetry and other properties are inferred. More generally, we show how topological textures can mitigate Coulomb repulsion to pair electrons and provide a new route to superconductivity. Our mechanism potentially applies to much wider class of systems but crucially invokes certain key ingredient such as inversion symmetry present in magic angle graphene. We discuss how these insights not only clarify why certain correlated moire materials do not superconduct, they also point to promising new platforms where robust superconductivity is anticipated.
Superconductivity often occurs close to broken-symmetry parent states and is especially common in doped magnetic insulators. When twisted close to a magic relative orientation angle near 1 degree, bilayer graphene has flat moire superlattice miniband s that have emerged as a rich and highly tunable source of strong correlation physics, notably the appearance of superconductivity close to interaction-induced insulating states. Here we report on the fabrication of bilayer graphene devices with exceptionally uniform twist angles. We show that the reduction in twist angle disorder reveals insulating states at all integer occupancies of the four-fold spin/valley degenerate flat conduction and valence bands, i.e. at moire band filling factors nu = 0, +(-) 1, +(-) 2, +(-) 3, and superconductivity below critical temperatures as high as 3 K close to - 2 filling. We also observe three new superconducting domes at much lower temperatures close to the nu = 0 and nu = +(-) 1 insulating states. Interestingly, at nu = +(-) 1 we find states with non-zero Chern numbers. For nu = - 1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field above 3.6 tesla is applied, consistent with a field driven phase transition. Our study shows that symmetry-broken states, interaction driven insulators, and superconducting domes are common across the entire moire flat bands, including near charge neutrality.
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great deal of interest, sparked by the discovery of correlated insulating and superconducting states, for twist angle $theta$ close to a so-called magic angle $approx 1.1{deg}$. In this work, we unveil, via near-field optical microscopy, a collective plasmon mode in charge-neutral TBG near the magic angle, which is dramatically different from the ordinary single-layer graphene intraband plasmon. In selected regions of our samples, we find a gapped collective mode with linear dispersion, akin to the bulk magnetoplasmons of a two-dimensional (2D) electron gas. We interpret these as interband plasmons and associate those with the optical transitions between quasi-localized states originating from the moire superlattice. Surprisingly, we find a higher plasmon group velocity than expected, which implies an enhanced strength of the corresponding optical transition. This points to a weaker interlayer coupling in the AA regions. These intriguing optical properties offer new insights, complementary to other techniques, on the carrier dynamics in this novel quantum electron system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا