ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamics of small transient brightenings in Solar corona

80   0   0.0 ( 0 )
 نشر من قبل Abhishek Rajhans
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small scale transients occur in the Solar corona at much higher frequencies than flares and play a significant role in coronal dynamics. Here we study three well-identified transients discovered by Hi-C and also detected by the EUV channels of Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). We use 0-D enthalpy-based hydrodynamical simulations and produce synthetic light curves to compare with AIA observations. We have modeled these transients as loops of ~ 1.0~Mm length depositing energies ~ 10^23 ergs in ~ 50 seconds. The simulated synthetic light curves show reasonable agreement with the observed light curves. During the initial phase, conduction flux from the corona dominates over the radiation, like impulsive flaring events. Our results further show that the time-integrated net enthalpy flux is positive, hence into the corona. The fact that we can model the observed light curves of these transients reasonably well by using the same physics as those for nanoflares, microflares, and large flares, suggests that these transients may have a common origin.

قيم البحث

اقرأ أيضاً

Context. Recent observations by the Extreme Ultraviolet Imager (EUI) on board Solar Orbiter have characterized prevalent small-scale transient brightenings in the corona above the quiet Sun termed campfires. Aims. In this study we search for comparab le brightenings in a numerical model and then investigate their relation to the magnetic field and the processes that drive these events. Methods. We use the MURaM code to solve the 3D radiation MHD equations in a box that stretches from the upper convection zone to the corona. The model self-consistently produces a supergranular network of the magnetic field and a hot corona above this quiet Sun. For the comparison with the model we synthesize the coronal emission as seen by EUI in its 174 {AA} channel, isolate the seven strongest transient brightenings, and investigate (the changes of) the magnetic field in and around these in detail. Results. The transients we isolate have a lifetime of about 2 minutes and are elongated loop-like features with lengths around 1Mm to 4 Mm. They tend to occur at heights of about 2Mm to 5Mm above the photosphere a bit offset from magnetic concentrations that mark the bright chromospheric network and they reach temperatures of above 1 MK. With this they very much resemble the (larger) campfires found in observations. In our model most events are energised by component reconnection between (bundles of) field lines that interact at coronal heights. In one case we find that untwisting of a highly twisted flux rope initiates the heating. Conclusions. Based on our study we propose that the majority of campfire events found by EUI are driven by component reconnection and our model suggests that this process contributes significantly to the heating of the corona above the quiet Sun.
We study the magnetic properties of small-scale transients in coronal hole. We found all brightening events are associated with bipolar regions and caused by magnetic flux emergence followed by cancellation with the pre-existing and newly emerging ma gnetic flux. In the coronal hole, 19 of 22 events have a single stable polarity which does not change its position in time. In eleven cases this is the dominant polarity. The dominant flux of the coronal hole form the largest concentration of magnetic flux in terms of size while the opposite polarity is distributed in small concentrations. In the coronal hole the number of magnetic elements of the dominant polarity is four times higher than the non-dominant one. The supergranulation configuration appears to preserve its general shape during approximately nine hours of observations although the large concentrations in the network did evolve and were slightly displaced, and their strength either increased or decreased. The emission fluctuations seen in the X-ray bright points are associated with reoccurring magnetic cancellation in the footpoints. Unique observations of an X-ray jet reveal similar magnetic behaviour in the footpoints, i.e. cancellation of the opposite polarity magnetic flux. We found that the magnetic flux cancellation rate during the jet is much higher than in bright points. Not all magnetic cancellations result in an X-ray enhancement, suggesting that there is a threshold of the amount of magnetic flux involved in a cancellation above which brightening would occur at X-ray temperatures. Our study demonstrates that the magnetic flux in coronal holes is continuously recycled through magnetic reconnection which is responsible for the formation of numerous small-scale transient events. The open magnetic flux forming the coronal-hole phenomenon is largely involved in these transient features.
Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry $10^{21}$ to $10^{24}$ erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from $10^{20}$ to $10^{23}$ ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.
Using ALMA observations, we performed the first systematic survey for transient brightenings (i.e. weak, small-scale episodes of energy release) in the quiet solar chromosphere at 3 mm. Our dataset included images of six 87 x 87 regions of the quiet Sun obtained with angular resolution of a few arcsec at a cadence of 2 s. The transient brightenings were detected as weak enhancements above the average intensity after we removed the effect of the p-mode oscillations. A similar analysis, over the same regions, was performed for simultaneous 304 and 1600 AA data obtained with the Atmospheric Imaging Assembly. We detected 184 3 mm transient brightening events with brightness temperatures from 70 K to more than 500 K above backgrounds of $sim 7200-7450$ K. Their mean duration and maximum area were 51.1 s and 12.3 Mm$^2$, respectively, with a weak preference of appearing at network boundaries rather than in cell interiors. Both parameters exhibited power-law behavior with indices of 2.35 and 2.71, respectively. Only a small fraction of ALMA events had either 304 or 1600 AA counterparts but the properties of these events were not significantly different from those of the general population except that they lacked their low-end energy values. The total thermal energies of the ALMA transient brightenings were between $1.5 times 10^{24}$ and $9.9 times 10^{25}$ erg and their frequency distribution versus energy was a power law with an index of 1.67. We found that the power per unit area provided by the ALMA events could account for only 1% of the chromospheric radiative losses (10% of the coronal ones). Therefore, their energy budget falls short of meeting the requirements for the heating of the upper layers of the solar atmosphere and this conclusion does not change even if we use the least restrictive criteria possible for the detection of transient brightenings.
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا