ﻻ يوجد ملخص باللغة العربية
We investigate the complexity=volume proposal in the case of Janus AdS$_3$ geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.
We compute holographic complexity for the non-supersymmetric Janus deformation of AdS$_5$ according to the volume conjecture. The result is characterized by a power-law ultraviolet divergence. When a ball-shaped region located around the interface is
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. Thi
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we ar
We analytically compute subsystem action complexity for a segment in the BTZ black hole background up to the finite term, and we find that it is equal to the sum of a linearly divergent term proportional to the size of the subregion and of a term pro
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, w