ﻻ يوجد ملخص باللغة العربية
We use an exact analytical technique [Phys. Rev. B textbf{101}, 115405 (2020), Phys. Rev. B textbf{102}, 165117 (2020)] to recover the surface Greens functions for Bernal (ABA) and rhombohedral (ABC) graphite. For rhombohedral graphite we recover the predicted surface flat bands. For Bernal graphite we find that the surface state spectral function is similar to the bilayer one, but the trigonal warping effects are enhanced, and the surface quasiparticles have a much shorter lifetime. We subsequently use the T-matrix formalism to study the quasiparticle interference patterns generated on the surface of semi-infinite ABA and ABC graphite in the presence of impurity scattering. We compare our predictions to experimental STM data of impurity-localized states on the surface of Bernal graphite which appear to be in a good agreement with our calculations.
We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B
Of the two stable forms of graphite, hexagonal (HG) and rhombohedral (RG), the former is more common and has been studied extensively. RG is less stable, which so far precluded its detailed investigation, despite many theoretical predictions about th
The existence of strong trigonal warping around the K point for the low energy electronic states in multilayer (N$geq$2) graphene films and graphite is well established. It is responsible for phenomena such as Lifshitz transitions and anisotropic bal
Few layer graphene (FLG) has been recently intensively investigated for its variable electronic properties defined by a local atomic arrangement. While the most natural layers arrangement in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedra
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (R