ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface states and quasiparticle interference in Bernal and rhombohedral graphite with and without trigonal warping

105   0   0.0 ( 0 )
 نشر من قبل Vardan Kaladzhyan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an exact analytical technique [Phys. Rev. B textbf{101}, 115405 (2020), Phys. Rev. B textbf{102}, 165117 (2020)] to recover the surface Greens functions for Bernal (ABA) and rhombohedral (ABC) graphite. For rhombohedral graphite we recover the predicted surface flat bands. For Bernal graphite we find that the surface state spectral function is similar to the bilayer one, but the trigonal warping effects are enhanced, and the surface quasiparticles have a much shorter lifetime. We subsequently use the T-matrix formalism to study the quasiparticle interference patterns generated on the surface of semi-infinite ABA and ABC graphite in the presence of impurity scattering. We compare our predictions to experimental STM data of impurity-localized states on the surface of Bernal graphite which appear to be in a good agreement with our calculations.



قيم البحث

اقرأ أيضاً

We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B sublattices of the first and the second layer, and we obtain closed-form analytical expressions both in real and Fourier spaces for the oscillatory corrections to the local density of states generated by the impurities. Finally, we compare our findings with recent experimental and semi-analytical T-matrix results from arXiv:2104.10620 and we show that there is a very good agreement between our findings and the previous results, as well as with the experimental data.
Of the two stable forms of graphite, hexagonal (HG) and rhombohedral (RG), the former is more common and has been studied extensively. RG is less stable, which so far precluded its detailed investigation, despite many theoretical predictions about th e abundance of exotic interaction-induced physics. Advances in van der Waals heterostructure technology have now allowed us to make high-quality RG films up to 50 graphene layers thick and study their transport properties. We find that the bulk electronic states in such RG are gapped and, at low temperatures, electron transport is dominated by surface states. Because of topological protection, the surface states are robust and of high quality, allowing the observation of the quantum Hall effect, where RG exhibits phase transitions between gapless semimetallic phase and gapped quantum spin Hall phase with giant Berry curvature. An energy gap can also be opened in the surface states by breaking their inversion symmetry via applying a perpendicular electric field. Moreover, in RG films thinner than 4 nm, a gap is present even without an external electric field. This spontaneous gap opening shows pronounced hysteresis and other signatures characteristic of electronic phase separation, which we attribute to emergence of strongly-correlated electronic surface states.
The existence of strong trigonal warping around the K point for the low energy electronic states in multilayer (N$geq$2) graphene films and graphite is well established. It is responsible for phenomena such as Lifshitz transitions and anisotropic bal listic transport. The absolute orientation of the trigonal warping with respect to the center of the Brillouin zone is however not agreed upon. Here, we use quasiparticle scattering experiments on a gated bilayer graphene/hexagonal boron nitride heterostructure to settle this disagreement. We compare Fourier transforms of scattering interference maps acquired at various energies away from the charge neutrality point with tight-binding-based joint density of states simulations. This comparison enables unambiguous determination of the trigonal warping orientation for bilayer graphene low energy states. Our experimental technique is promising for quasi-directly studying fine features of the band structure of gated two-dimensional materials such as topological transitions, interlayer hybridization, and moire minibands.
Few layer graphene (FLG) has been recently intensively investigated for its variable electronic properties defined by a local atomic arrangement. While the most natural layers arrangement in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedra l) stacking characterized by a relatively high energy barrier can also occur. When both stacking occur in the same FLG device this results in in-plane heterostructure with a domain wall (DW). We show that ABC stacking in FLG can be controllably and locally turned into ABA stacking by two following approaches. In the first approach, Joule heating was introduced and the transition was characterized by 2D-peak Raman spectra at a submicron spatial resolution. The observed transition was initiated at a small region and then the DW controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of laser pulses of 790 nm wavelength, while the transition was visualized by transmission electron microscopy in both diffraction and dark field modes. Also, with this approach, a DW was visualized in the dark-field imaging mode, at a nanoscale spatial resolution.
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (R G), which has been receiving increasing attention in the last years. In both natural and artificial samples however, multilayer stacked Bernal graphene (BG) occurs more frequently, making it desirable to determine what is their relative stability and under which conditions RG might be favored. Here, we study the energetics of BG and RG in bulk and also multilayer stacked graphene using first-principles calculations. It is shown that the electronic temperature, not accounted for in previous studies, plays a crucial role in determining which phase is preferred. We also show that the low energy states at room temperature consist of BG, RG and mixed BG-RG systems with a particular type of interface. Energies of all stacking sequences (SSs) are calculated for N = 12 layers, and an Ising model is used to fit them, which can be used for larger N as well. In this way, the ordering of low energy SSs can be determined and analyzed in terms of a few parameters. Our work clarifies inconsistent results in the literature, and sets the basis to studying the effect of external factors on the stability of multilayer graphene systems in first principles calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا