ترغب بنشر مسار تعليمي؟ اضغط هنا

TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data

88   0   0.0 ( 0 )
 نشر من قبل Veselin Kostov B
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first discovery of a transiting circumbinary planet detected from a single sector of TESS data. During Sector 21, the planet TIC 172900988b transited the primary star and then 5 days later it transited the secondary star. The binary is itself eclipsing, with a period of P = 19.7 days and an eccentricity of e = 0.45. Archival data from ASAS-SN, Evryscope, KELT, and SuperWASP reveal a prominent apsidal motion of the binary orbit, caused by the dynamical interactions between the binary and the planet. A comprehensive photodynamical analysis of the TESS, archival and follow-up data yields stellar masses and radii of M1 = 1.2384 +/- 0.0007 MSun and R1 = 1.3827 +/- 0.0016 RSun for the primary and M2 = 1.2019 +/- 0.0007 MSun and R2 = 1.3124 +/- 0.0012 RSun for the secondary. The radius of the planet is R3 = 11.25 +/- 0.44 REarth (1.004 +/- 0.039 RJup). The planets mass and orbital properties are not uniquely determined - there are six solutions with nearly equal likelihood. Specifically, we find that the planets mass is in the range of 824 < M3 < 981 MEarth (2.65 < M3 < 3.09 MJup), its orbital period could be 188.8, 190.4, 194.0, 199.0, 200.4, or 204.1 days, and the eccentricity is between 0.02 and 0.09. At a V = 10.141 mag, the system is accessible for high-resolution spectroscopic observations, e.g. Rossiter-McLaughlin effect and transit spectroscopy.

قيم البحث

اقرأ أيضاً

We report the detection of the first circumbinary planet found by TESS. The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30-minute cadence and in sectors 4 through 12 at two-minute cadence. It consists of two stars with m asses of 1.1 MSun and 0.3 MSun on a slightly eccentric (0.16), 14.6-day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ~6.9 REarth and was observed to make three transits across the primary star of roughly equal depths (~0.2%) but different durations -- a common signature of transiting circumbinary planets. Its orbit is nearly circular (e ~ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ~1 degree. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for circumbinary planets, and provides further understanding of the formation and evolution of planets orbiting close binary stars.
We report the discovery of HATS-71b, a transiting gas giant planet on a P = 3.7955 day orbit around a G = 15.35 mag M3 dwarf star. HATS-71 is the coolest M dwarf star known to host a hot Jupiter. The loss of light during transits is 4.7%, more than a ny other confirmed transiting planet system. The planet was identified as a candidate by the ground-based HATSouth transit survey. It was confirmed using ground-based photometry, spectroscopy, and imaging, as well as space-based photometry from the NASA TESS mission (TIC 234523599). Combining all of these data, and utilizing Gaia DR2, we find that the planet has a radius of $1.080 pm 0.016 R_J$ and mass of $0.45 pm 0.24 M_J$ (95% confidence upper limit of $0.81 M_J$ ), while the star has a mass of $0.569 pm^{0.042}_{0.069},M_odot$ and a radius of $0.5161pm^{0.0053}_{0.0099},R_odot$. The Gaia DR2 data show that HATS-71 lies near the binary main sequence in the Hertzsprung-Russell diagram, suggesting that there may be an unresolved stellar binary companion. All of the available data is well fitted by a model in which there is a secondary star of mass $0.24 M_odot$, although we caution that at present there is no direct spectroscopic or imaging evidence for such a companion. Even if there does exist such a stellar companion, the radius and mass of the planet would be only marginally different from the values we have calculated under the assumption that the star is single.
We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler dat a as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 +/- 0.17 Earth radii planet orbits outside the 20-day orbit of an eclipsing binary consisting of an F dwarf (1.734 +/- 0.044 Solar radii, 1.528 +/- 0.087 Solar masses) and M dwarf (0.378+/- 0.023 Solar radii, 0.408 +/- 0.024 Solar masses). For the planet, we find an upper mass limit of 169 Earth masses (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planets orbit, at ~1000 AU,a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.
Of the nine confirmed transiting circumbinary planet systems, only Kepler-47 is known to contain more than one planet. Kepler-47 b (the inner planet) has an orbital period of 49.5 days and a radius of about $3,R_{oplus}$. Kepler-47 c (the outer plane t) has an orbital period of 303.2 days and a radius of about $4.7,R_{oplus}$. Here we report the discovery of a third planet, Kepler-47 d (the middle planet), which has an orbital period of 187.4 days and a radius of about $7,R_{oplus}$. The presence of the middle planet allows us to place much better constraints on the masses of all three planets, where the $1sigma$ ranges are less than $26,M_{oplus}$, between $7-43,M_{oplus}$, and between $2-5,M_{oplus}$ for the inner, middle, and outer planets, respectively. The middle and outer planets have low bulk densities, with $rho_{rm middle} < 0.68$ g cm$^{-3}$ and $rho_{rm outer} < 0.26$ g cm$^{-3}$ at the $1sigma$ level. The two outer planets are tightly packed, assuming the nominal masses, meaning no other planet could stably orbit between them. All of the orbits have low eccentricities and are nearly coplanar, disfavoring violent scattering scenarios and suggesting gentle migration in the protoplanetary disk.
We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The pla ne of the planets orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planets mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا